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ABSTRACT

We present a simple dynamical model of the rotation of Mercury in which the Hermean rotation is composed of two commensu-
rabilities: (i) a 3:2 spin-orbit resonance between fast variables and (ii) a 1:1 synchronous precession of both orbital and rotational
nodes. We investigate the coupling between these two degrees of freedom. First, we study the global phase space of Mercury and
quantify the libration areas. Second, we concentrate on the present location of Mercury. The impact of the slow degree of freedom
on the fast one can be modeled through the adiabatic invariant, whereas the impact of the fast degree of freedom on the slow one is
clearly represented by Poincaré sections. In addition, the adiabatic invariant theory leads to a simple analytical model of the rotation
of Mercury where the two coupled degrees of freedom are taken into account. This model can be used in different applications that
require a first-order rotational motion such as the one describing the influence of the precession and rotation of the planet on the orbit
of an artificial satellite around Mercury.
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1. Introduction

Radar observations have revealed that Mercury’s rotational pe-
riod is 58.6 days (Pettengil & Dyce 1965) rather than the pre-
viously accepted value of 88 days. Colombo (1965) pointed out
that the ratio of the orbital to rotational period is exactly 3:2,
a unique case of the asynchronous spin-orbit resonance of our
Solar System. In the peculiar case of Mercury, Celletti & Falconi
(1992) and Celletti & Chierchia (2000) investigated the stability
of spin-orbit resonances by using the KAM theory successfully.
Colombo (1965), Peale (1969), and Beletski (1972) studied the
dynamical motion of Mercury by the generalized Cassini laws.
Nevertheless, the rotational motion of Mercury has been under-
studied compared to the synchronous spin-orbit resonance cases
(see for example Bouquillon et al. 2003).

Two commensurabilities characterize the rotational motion
of Mercury: (i) a 3:2 spin-orbit resonance between two fast
variables (the mean longitude and the spin rotation angle of
Mercury) and (ii) a 1:1 synchronous precession of the two
nodes (the orbital and rotational ones). These motions are wholly
forced by the point source Sun acting on Mercury and generat-
ing two modes of libration. Rambaux & Bois (2004) determine
the two proper or resonant frequencies at 15.847 and 1066.91
years by using the SONYR model. SONYR is the acronym of
Spin-Orbit N-body Relativistic model, and it was used to per-
form a very accurate rotational motion of Mercury included in
the Solar System. More recently, D’Hoedt & Lemaitre (2004a)
developed a Hamiltonian approach to the rigid rotational motion
of Mercury, giving a first approximation of the rotation com-
posed of two degrees of freedom (Lemaitre et al. 2006). The
reference model is truncated, averaged, and simplified; several
canonical transformations in chain are used to uncouple these
two main degrees of freedom. Despite these several steps, the
two corresponding proper frequencies, obtained by this analyti-
cal approach (15.857 and 1065.08 years) are very close to those

obtained by Rambaux & Bois (2004) by using the SONYR
model. This means that the analytical model could be consid-
ered as a good first approximation of the resonant rotation of
Mercury. It is relevant to go into the details in its structure, to
understand how the coupling between the two degrees of free-
dom acts and how each motion interferes in the motion of the
other degree of freedom.

The objective of this paper is to study the coupled simplified
dynamics of Mercury, first in the global two-dimensional phase
space and second, locally in the neighborhood of the present res-
onant position of Mercury.

In the next section after a few statements and basic formulae,
we determine the equilibrium points (corresponding to the so-
called Cassini equilibria), plot the phase space, and quantify the
amplitudes of the libration zones. In the third section, we focus
on the present position of Mercury and investigate the mutual
interactions and deformations induced by the motion on each
degree of freedom. We show that the impact of the slow degree
of freedom on the fast one can be modeled through the adiabatic
invariant theory and that the impact of the fast degree of freedom
on the slow one is clearly represented by Poincaré sections.

2. The two-dimensional Hamiltonian approach

To describe the phase space corresponding to the rotational mo-
tion of Mercury, we start with the Hamiltonian developed by
D’Hoedt & Lemaitre (2004a,b).

2.1. The variables

The orbit of Mercury is described by the classical Delaunay’s el-
ements: Lo,Go, Ho, lo, go, ho. The angle lo is the mean anomaly,
go = ωo is the argument of pericenter, and ho = Ωo the longi-
tude of the ascending node, measured on some suitable inertial
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reference plane. The inertial reference system can be linked to
the ecliptic plane fixed at some epoch or to a suitable Laplace
plane fixed at some epoch (Lemaitre et al. 2006). The capital
letters designate the associated conjugated momenta and are de-
fined by

Lo = m
√
µ a

Go = Lo

√
1 − e2

Ho = Go cos io
(1)

where e is the eccentricity, a the semimajor axis, and µ is equal
to G(m +M), where G is the universal constant of gravitation, m
and M are the masses of Mercury and the Sun, respectively.

To describe the rotational motion of a rigid body around its
center of mass, we use Andoyer’s variables (Deprit 1967). They
consist of two linked sets of Euler’s angles: the first set (h,K,−)
locates the position of the frame linked to the rotational angular
momentum with respect to the inertial frame, and the second set
(g, J, �) locates the body frame (corresponding to the principal
axes of inertia) in the previous frame tied to the angular momen-
tum. There, L = G cos J, G and H = G cos K are the conjugate
momenta of the angles (�, g, h) where G is the norm of the angu-
lar momentum and J the angle between the angular momentum
and the third axis of inertia. The variable K is called the inertial
obliquity (the obliquity is measured with respect to the inertial
reference system). Andoyer’s variables present two virtual sin-
gularities when K and J are equal to zero. However, the sum of
the three angular variables �, g, and h is always well-defined.
In this model, we consider that J = 0 (a three-dimensional ap-
proach can be found in D’Hoedt & Lemaitre 2004b) and we use
the following modified Andoyer’s variables

λ1 = � + g + h Λ1 = G
λ3 = −h Λ3 = G − H = G (1 − cos K) (2)

in which we keep the indices 1 and 3 as in the reference paper
(D’Hoedt & Lemaitre 2004a).

The rotation period of Mercury is nearly equal to 2/3 of the
orbital period. Also, as studied by Peale (1969) and Beletski
(1972), the node of the orbit and the node of the equator have,
on average, the same period. Consequently, we defined two res-
onant angles:

σ1 = λ1 − 3
2 lo − ho − go

σ3 = λ3 − ho.
(3)

The two sets of canonical variables (orbital and rotational) are
then mixed in these commensurabilities. In order to keep a
canonical transformation, we must associate to lo a new conju-
gated momentum:

Λo = Lo +
3
2
Λ1, (4)

where Λ1 is, in this set, the conjugated momentum of σ1.

2.2. The Hamiltonian

The Hamiltonian (5) is composed of four terms: the first one
corresponds to the Keplerian problem, the second one is due to
the precession of the orbital plane. It is the only contribution
of the planetary perturbations, given by a constant precession
term µ1. It plays an important role in the stability of the equi-
libria as shown in D’Hoedt et al. (2006). The third term in the
Hamiltonian is related to the free rotation of a rigid body about
its center of mass, and the fourth one is due to the solar torque
acting on Mercury developed in spherical harmonics of degree 2.

The development of the Hamiltonian is truncated in
eccentricity and inclination, limited to the second degree for the
harmonics, averaged over the short periods, which gives the fol-
lowing expression:

〈H〉 = − m3 µ2

2
(
Λ0 − 3Λ1

2

)2
− µ1(Ho + Λ1 − Λ3) (5)

+
Λ2

1

2 I3
− F

(
C0

2(e)
2∑

i=0

a0i cos (iσ3)

+C2
2(e)

4∑
i=0

a2i cos (2σ1 + iσ3)
)

with

C0
2(e) = C0

2

(
1 +

3
2

e2

)
, C2

2(e) = 6 C2
2

(
7
2

e − 123
16

e3

)

and

F = GMm7 µ3 R2
e

2
(
Λ0 − 3Λ1

2

)6

where a0i and a2i depend on io and K, Re is the equatorial ra-
dius of Mercury, I3 is the third principal moment of inertia, C0

2,
and C2

2 are the spherical harmonics of Mercury.

2.3. Cassini’s equilibria

The equilibrium points (also called Cassini’s equilibria) are ob-
tained by equating the right hand sides of the canonical equations
of motion to zero:
dσk

dt
=
∂〈H〉
∂Λk

= 0;
dΛk

dt
= −∂〈H〉
∂σk

= 0 (6)

for k = 1 and k = 3.
These equations admit equilibria defined by the doublet

(σ1, σ3) equal to (0, 0), (0, 360), (180, 0), (180, 360) given in de-
grees, denoted hereafter deg, and the conditions:

∂〈H〉
∂Λ1

= 0;
∂〈H〉
∂ cos K

= 0. (7)

Let us note that σ1 = 0 deg (respectively σ1 = 180 deg) means
that the axis of smallest (respectively intermediate) inertia points
toward the Sun at each perihelion passage and that σ3 = 0 deg
represents the alignment of the lines of node of the orbit and of
the equator. On the contrary σ3 = 360 deg expresses the anti-
alignment of the two nodes.

Equations (7) give the following transcendental equation

F
I3µ1

(C0
2(e) F1 + C2

2(e) F2) = −3m3µ2

2L3
0

(8)

−9F
L0

(C0
2(e) F3 + C2

2(e) F4) −µ1 cos K,

where the functions F1, F2, F3 and F4 are defined by:

F1 =
3
2

sin (2io − 2K)/ sin K (9)

F2 =

[
−1

2
sin (io − K) − 1

4
sin (2io − 2K)

]
/ sin K (10)

F3 = −1
4
− 3

4
cos (2io − 2K) (11)

F4 =
3
8
+

1
2

cos (io − K) +
1
8

cos (2io − 2K). (12)
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Table 1. The numerical values of the parameters. (a) From D’Hoedt
et al. (2006) and (b) from Anderson et al. (1987).

Name Quantity Value Unity
a Semi-major axis (a) 57.9 ×106 km
e Eccentricity (a) 0.206
i0 Inclination of the orbital plane (a) 7 deg
Re Equatorial radius of Mercury 2440 km
C0

2 Spherical harmonics (b) 60.0 ×10−6

C2
2 Spherical harmonics (b) 10.0 ×10−6

I3 polar moment of inertia (a) 0.34
µ1 Precessional constant (a) 0.2244 × 10−4 rad y−1

Table 2. Values of the equilibria ecliptic obliquity from the analytical
and numerical studies in the case (σ1, σ3) = (0, 0) deg.

Equilibria ecliptic obliquity Analytically (deg) Numerically (deg)
K1 7.027 7.028
K2 102.098 102.101
K3 186.968 186.969
K4 271.908 271.909

There are four real solutions to this equation for each doublet
(σ1, σ3) depending on the values of the dynamical and geophys-
ical parameters (the values are listed in Table 1). We choose the
ecliptic reference frame of the standard epoch J2000 as the in-
ertial one. For the doublet (0, 0), we compute the value of K�,
the equilibrium value of the ecliptic obliquity, first from the an-
alytical equation (8) and second from the numerical integration,
see Table 2. The case µ1 = 0 would give K1 = io = 7 deg.
Consequently, the increase of about 0.027 deg for K1 in Table 2
comes from the precession (D’Hoedt et al. 2006).

The existence of these solutions (2 or 4 equilibria) has al-
ready been pointed out by several authors (Colombo 1965; Peale
1969, 1974; Beletskii 1972). However, our contribution has the
advantage of calculating these equilibrium positions with recent
values of the gravitational coefficients (Anderson et al. 1987),
which introduce slight quantitative differences in the numerical
results.

2.4. The global phase space (σ3 , K)

We represent the dynamics of the Hamiltonian in the plane
(σ3,K) describing the phase space of the second degree of free-
dom. The four Hamiltonian equations of motion are numeri-
cally integrated for fixed initial conditions (σ1 = σ10 = 0 deg,
Λ1 = Λ10 = 13.303 mR2

e/yr, where the equatorial radius of
Mercury Re, its mass m, and the terrestrial year are the units of
length, mass, and time, respectively) and by assuming that the
orbit of Mercury precesses at a constant rate. The behavior of
the obliquity is plotted in Fig. 1 for K < 180 deg and in Fig. 2
for 180 < K < 360 deg. We find good agreement with the eight
fixed points of the analytical computation (see Table 2). Four of
the equilibria are located on the vertical line σ3 = 0 and the
others on the vertical line σ3 = 180 deg. Six points are centers
and two are saddle points characterizing the stable and unstable
behaviors of the dynamics around these fixed points.

In addition, Figs. 1 and 2 give the amplitudes of the stable
zones, the so-called “cat eyes” characterizing the pendulum cen-
ters. For the present location of Mercury (K1), the ecliptic obliq-
uity has to be smaller than 14 deg to capture Mercury in σ3 res-
onance. The width of the area surrounding the equilibrium K3 is
around 12 deg and around 5 deg for K4.

Fig. 1. (σ3,K) phase space. Each panel focuses on an equilibrium point
over an interval of 18 deg for values of K lower than 180 deg. The area
surrounding the equilibrium point located at (0, 7) deg is expected to
contain the actual position of the spin axis of Mercury.

2.5. The global phase space (σ1 ,Λ1 )

We show the dynamics of the Hamiltonian in the plane (σ1,Λ1)
corresponding to the phase space of the first degree of free-
dom. We fixed initial conditions of the second degree of freedom
(σ3 = σ30 = 0, Λ3 = Λ30 = 0.09917 mR2

e /yr) and assumed, as
previously, that the orbit of Mercury precesses at a constant rate.

Figure 3 of the phase space (σ1,Λ1) presents a pendulum-
like behavior of the first degree of freedom around a fixed point
(0.0 deg; 13.303 mR2

e/yr), which is a stable point (see also a
Poincaré section plotted in Rambaux & Bois 2004, Fig. 2). The
width of the resonance area measured on the Λ1 axis is around
0.26 mR2

e /yr.

3. The local coupled resonant motion

3.1. Phase space

We focus on the dynamics in the neighborhood of the first equi-
librium K = K1, where Mercury is assumed to be. Consequently,
we perform a numerical integration of the Hamiltonian 〈H〉
Eq. (5) to obtain a detailed local description of the two degree
of freedom phase space. In order to avoid the singularity at
the origin, we represent the dynamical motion in terms of
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Fig. 2. (σ3,K) phase space. Each panel focuses on an equilibrium point
over an inteval of 18 deg for values of K upper than 180 deg.

Fig. 3. Phase space (σ1,Λ1). The curve presents a pendulum-like be-
havior with a librational area around 0.26 mR2

e/yr on the Λ1 axis.

Cartesian coordinates (x1, y1) and (x3, y3) by the canonical
transformations:{

xi =
√

2Λi cosσi

yi =
√

2Λi sinσi

for i = 1 or 3. In addition, we normalize Λi to mR2
e/year and all

the following variables are adimensional.
Figure 4 shows the rotation of Mercury in the

planes (x1, y1) and (x3, y3) for the initial conditions

x10 = 5.1581, y10 = 0.00, y30 = 0.00 and for x30 chosen be-
tween 0.0637 and 0.5079. The curves of the same color, Figs. 4a
and 4b correspond to the same initial conditions. The curves in
the plane (x1, y1) show a typical behavior of first-order reso-
nance in the resonance area (also called libration area), and the
phase plane (x3, y3) corresponds to a pendulum-like behavior.
The first degree of freedom (x1, y1) is clearly associated to the
first proper period of 15 years and the second one (x3, y3) to
the second proper period of 1066 years. However, the mutual
influence of both periods is obvious on both planes ; and due
to the fact that the periods are very distinct (a ratio around 70),
the analysis of the perturbation that they induce on each other,
requires specific tools. For Sects. 3.2 and 3.3, we focus on the
red curves of Figs. 4a and b corresponding to y30 = 0.0637,
i.e. showing a strong interaction between the two degrees of
freedom. For the Sect. 3.4, we investigate the Poincaré section
for the blue curve, i.e. y30 = 0.4453.

3.2. Slice cutting

To illustrate the motion in (x1, y1) plane, we adapt an enlight-
ening method developed by Froeschlé (1972) to represent the
four-dimension map: slice cutting. We consider the space of the
points P = (x1, y1, t) for t = [0, 1053] years. We define one slice
as the point family (x1k, y1k) of projected points P on (xy) plane
such that

{(x, y, t) : tk−1 < t � tk} (13)

where tk is equal to k h. According to the proper periods and ini-
tial conditions (close to the equilibrium) of our problem, we fix
h = 17 years, and k varies from 0 to 62 (so the time interval is
1053 years). We plot each slice, the (x1k, y1k) plane correspond-
ing to a value of k, side by side, to give a better idea of the surface
and especially to study the sheets in detail. We present a sample
of slice taken at various dates (quoted on the slice) in order to il-
lustrate the behavior of the dynamical interactions (the complete
sequence contains 62 slices). The complete display of the motion
allows identification of the different dynamical phases occuring
during the spin-orbit motion. The slices shown in Fig. 5 have to
be seen from the left to right and from top to bottom.

The section on each slice evolves with time due to the in-
teraction with the second degree of freedom (x3, y3). We start
from a banana shape, and the section is deformed along the up-
per branch before coming back again to the banana shape. At
this point, the section is going to elongate according to the lower
branch and finally return of its initial form. The period of time
for this pulsation is the second proper frequency.

From these figures, we deduce two particular features of the
behavior: (i) the area enclosed by the orbit seems to be constant
and (ii) the center of the orbit undergoes a regular oscillation
during one period.

3.3. Adiabatic behavior

The geometrical area enclosed by the orbit is 2πJ , where J is
the action variable defined as (Henrard 2005):

J = 1
4π

∮
x1dy1 − y1dx1. (14)

We can evaluate J at each step of our numerical integration,
thanks to the above expression. Figure 6 shows that the actionJ
is almost constant over 3000 years, proving that the second de-
gree of freedom acts as a very slow parameter on the first degree,
in an adiabatic way. Let us demonstrate this feature analytically.
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Fig. 4. a) Phase plane (x1, y1) and b) phase plane (x3, y3). The curves of the same color correspond to the same initial conditions. The blue curves
are the closest to the equilibrium position.

Fig. 5. Behavior of the orbit in the (x1, y1) plane over 1053 years by slices of 17 years taken at various times.

Locally, we can expand the Hamiltonian in powers of ξ1, y1,
ξ3, and y3, where ξ1 and ξ3 are obtained by a translation of x1
and x3 at the equilibrium corresponding to K1:

ξ1 = x1 − x1,K1 with x1,K1 = 5.158291
ξ3 = x3 − x3,K1 with x3,K1 = 0.445344. (15)

Let us now concentrate on the behavior of the system in the
(ξ1, y1) plane. As a first approximation, we obtain a quadratic
form with the following terms:

K2 = a ξ21 + 2c ξ1ξ3 + e y2
1 + 2g y1y3 (16)

where a = 39.12645, 2c = −0.00051, e = 0.00100, 2g =
0.00017 (D’Hoedt & Lemaître 2004). Where ξ3 and y3 are con-
sidered as slow explicit functions of time,

ξ3 = A3 cos θ
y3 = B3 sin θ. (17)

Here, θ̇ = ω3 is the (slow) proper frequency corresponding to
the equilibrium, and A3 and B3 are fixed (small) amplitudes. In
the HamiltonianK2, the precession constant µ1 is negligible over

the time scale of this study (about one thousand years). In a two-
dimensional canonical formalism, the Hamiltonian becomes

K = K2(ξ1, y1, θ) + ω3 Θ

with Θ the conjugated momentum to θ.
We perform a canonical transformation (a parameter-

dependent translation to center the ellipse and the corresponding
correction on the other degree of freedom):

ξt1 = ξ1 +
c
a A3 cos θ θt = θ

yt
1 = y1 +

g
e B3 sin θ Θt = Θ − R(y1, ξ1, θ).

(18)

By using the canonical conditions [Θt; yt
1] = 0 and [Θt; ξt1] = 0,

where [ ; ] stands for Poisson brackets, we obtain the following
explicit expression for the remainder function R:

R(y1, ξ1, θ) =
c
a

A3 sin θ y1 +
g

e
B3 cos θ ξ1. (19)

The Hamiltonian can be written as

K = a ξt1
2
+ e yt

1
2
+ ω3(Θt + R(yt

1, ξ
t
1, θ

t)) + ... (20)
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Fig. 6. Temporal evolution of the action J quasi-constant over
3000 years.

Using action-angle variables J1 and Ψ1 instead of ξt1 and yt
1, we

can rewrite the Hamiltonian K as

K = 2
√

ae J1 + ω3Θ
t + ω3R(J1,Ψ1, θ

t) + ... (21)

After a second averaging over Ψ1, the resulting action J̄1 is a
constant, related to J1 by the relation

J1 = J̄1 + δJ1. (22)

Choosing A3 = B3 = 0.4 corresponding to our numerical simu-
lation (see Fig. 4b), we prove that the area J1 is nearly constant,
and the oscillation δJ1 around J̄1 is bounded by

| δJ1 |< max
(
ω3

c
a

A3, ω3
g

e
B3

)
M (23)

where M is the maximum amplitude for the selected orbit. As
a consequence, |δJ1| is on the order of 1.2 × 10−7 in agreement
with the numerical calculation in Fig. 6.

In the plane (x1, y1), the guiding trajectory can be considered
at any time as a close curve, centered on a slowly moving cen-
ter as described in Fig. 7, along with motion of the orbit over
1070 years.

Thanks to the Hamiltonian K Eq. (20), a second time-
dependent correction on the position of the center of the el-
lipse can be calculated, proportional to ω3. It corresponds to
a time-dependent translation, leading to twice-translated vari-
ables, called ξtt1 and ytt

1 and given by

ξtt1 = ξ
t
1 + ω3 B3 cos θ g

2ea

ytt
1 = y

t
1 + ω3 A3 sin θ c

2ea ·
(24)

In terms of these variables, the simplified Hamiltonian K is
written as

K = a (ξtt1 )2 + e (ytt
1 )2 + O(ω2

3) + ω3Θ
t. (25)

The explicit solutions of the HamiltonianK are then

ξtt1 = C1 cos (2
√

aet +C2)

ytt
1 = C1

√
a
e sin (2

√
aet +C2),

(26)

where C1 and C2 are two constants of integration and the funda-
mental period 2π/(2

√
ae) is equal to 15.707 years.

The complete time-dependent translation is then

ξ1 = ξ
tt
1 − ω3 B3 cos θ g

2ea − c
a A3 cos θ

y1 = y
tt
1 − ω3 A3 sin θ c

2ea − ge B3 sin θ.
(27)

Fig. 7. The orbit in the plane (x1, y1) in the case of the Hamiltonian K2

and motion of the center of the guiding trajectory (straight line).

3.4. Asymmetric shape of the curves

Taking more significant terms in the expansion of the
Hamiltonian (16) into account, we end up with the fourth-degree
polynomial expression:

K4 = a ξ21 + bξ31 + pξ41 + 2c ξ1ξ3 + qξ1ξ
2
3 + e yt

1
2
+ bξ1y

2
1

+py4
1 + 2g y1y3 + qξ1y

2
3 (28)

where a, c, e, and g are already defined and b = 7.58542, q =
−0.00115, and p = 0.36765. The result is an equation of motion
of the fourth order with two real and two imaginary solutions.

The same procedure can be applied; however, the resulting
curve is not an ellipse anymore but a more complicated curve
with a banana shape, slowly moving and deforming with time.
It is not symmetrical with respect to the center of the ellipse.
By reproducing this truncated expression, replacing ξ3 and y3
by their simple time approximation, we get the following shape
shown in Fig. 8 (in (x1, y1) plane), very close to our numerical
integration.

3.5. Motion of the slow degree of freedom

We investigate the motion of the second degree of freedom. As
the first degree of freedom varies periodically and rapidly, we
perform a Poincaré section of the plane (x3, y3) with the condi-
tion y1 = 0 as section. Figure 9 shows such a Poincaré section.
In this case, as expected, the orbit is elliptic without any oscil-
lations due to the first proper frequency. In order to highlight
the smoothness of the curve, we superpose the complete motion
on the section in a zoom of the plot, presented in Fig. 10. It is
obvious that the first degree of freedom introduces small, rapid,
periodic deformations on the regular motion of the second de-
gree of freedom but modifies neither the shape of curves nor the
dynamical behavior.

4. Conclusion

We have studied the global, coupled resonant dynamics of
Mercury and calculated the amplitude of resonance areas. We
found that the resonance area of the actual position of Mercury
is around 14 degrees in ecliptic obliquity. We also studied the
interaction among the two degrees of freedom used to describe
the rotation of Mercury. The associated proper periods are very
distinct and the analysis of the mutual perturbation require
different tools: (i) the impact of the slow variable on the fast
one is studied through the adiabatic invariant, whereas (ii) the
impact of the fast variable on the slow one can be described
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Fig. 8. The orbit in the plane (x1, y1) in the case of the Hamiltonian K4.
Panel a) shows the orbit over 1070 years. Panel b) shows parts of the
orbit taken at three different times and plotted over 16 years in each
case.

Fig. 9. Cross section of the plane (x3, y3) for y1 = 0. The motion is
characterized by a pendulum-like section.

through Poincaré sections. In addition, using the adiabatic
invariant, we establish a simple analytical model of the coupled

Fig. 10. The complete curve (dashed lines) and the section (black line).
The cross section is the smooth curve and presents no oscillations as
expected.

rotation of Mercury providing a right qualitative description of
motion. This analytical model can be used for various applica-
tions to analyze observations, as well as to understand dynamical
phenomena such as the capture in resonance. For example, the
influence of the precession-rotation of Mercury on the orbital
plane of an artificial satellite can be studied easily. These stud-
ies will be very useful for analyzing observations of Hermean
probes such as MESSENGER or BepiColombo.
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