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Long-period forcing of Mercury’s libration in longitude
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Abstract

Planetary perturbations of Mercury’s orbit lead to forced librations in longitude in addition to the 88-day forced libration induced by Mercury’s
orbital motion. The forced librations are a combination of many periods, but 5.93 and 5.66 years dominate. These two periods result from the
perturbations by Jupiter and Venus respectively, and they lead to a 125-year modulation of the libration amplitude corresponding to the beat
frequency. Other periods are also identified with Jupiter and Venus perturbations as well as with those of the Earth, and these and other periods
in the perturbations cause several arc second fluctuations in the libration extremes. The maxima of these extremes are about 30′′ above and the
minima about 7′′ above the superposed ∼60′′, 88-day libration during the 125-year modulation. Knowledge of the nature of the long-period forced
librations is important for the interpretation of the details of Mercury’s rotation state to be obtained from radar and spacecraft observations. We
show that the measurement of the 88-day libration amplitude for the purposes of determining Mercury’s core properties is not compromised by
the additional librations, because of the latter’s small amplitude and long period. If the free libration in longitude has an amplitude that is large
compared with that of the forced libration, its ∼10-year period will dominate the libration spectrum with the 88-day forced libration and the long-
period librations from the orbital perturbations superposed. If the free libration has an amplitude that is comparable to those of the long-period
forced libration, it will be revealed by erratic amplitude, period and phase on the likely time span of a series of observations. However, a significant
free libration component is not expected because of relatively rapid damping.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Mercury rotates at an average rate of exactly 1.5n (n = or-
bital mean motion) with its spin axis nearly perpendicular to its
orbit plane (Pettengill and Dyce, 1965). The stability of this ro-
tation is such that the axis of minimum moment of inertia is
aligned with the direction to the Sun when Mercury is at the
perihelion of its orbit (Colombo, 1965; Goldreich and Peale,
1966). If the axis is displaced from the solar direction when
Mercury is at perihelion, the solar gravitational restoring torque
from Mercury’s axial asymmetry, averaged around the orbit,
tends to realign the axis toward the Sun at perihelion thereby
keeping the average spin rate at precisely 1.5n. If we were to
view Mercury only when it is at perihelion, the axis of mini-
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mum moment of inertia would tend to librate about the direction
to the Sun with a period O(10) years. Since the phase and am-
plitude (up to 90◦) of this libration are arbitrary, this is called
a free libration in longitude. In contrast, a forced or physical
libration in longitude results from the reversing torques on Mer-
cury’s non-axisymmetric shape as the planet rotates relative to
the Sun during an orbit period. The period of this libration is 88
days, and the amplitude and phase are determined by Mercury’s
gravitational asymmetry and orbital motion. The short-period
physical libration is superposed on any free libration. Both li-
brations result in periodic variations of the spin rate about the
mean value of 1.5n, which lead to deviations of the position
of the axis of minimum moment of inertia from what it would
have had if the rotation rate had been exactly 1.5n.

Tidal dissipation brings Mercury to the spin–orbit resonance,
where this dissipation along with dissipation at a liquid core–
solid mantle boundary (CMB) effects capture into the reso-
nance and then damps the free libration to zero amplitude
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(e.g., Goldreich and Peale, 1966; Correia and Laskar, 2004).
From essentially any initial condition, the dissipation simulta-
neously brings Mercury’s spin axis to Cassini state 1 (close to
the orbit normal) (Colombo, 1966; Peale, 1969), where the spin
axis, the orbit normal and the normal to the Laplace plane, on
which Mercury’s orbit precesses at nearly a constant rate with
nearly a constant inclination, remain coplanar (Peale, 1974;
Ward, 1975). Cassini state 1 approaches the orbit normal as the
magnitude of the orbital precession rate is reduced, and it co-
incides with the orbit normal for a fixed orbit. When Mercury
is close to the final state, the time scales for damping the free
libration and to approach Cassini state 1 are both of the order
of 105 years (Peale, 2005). Since this time is short compared to
the age of the Solar System, we would expect to find Mercury
in the equilibrium Cassini state 1 with completely damped free
libration in longitude.

If Mercury is in this equilibrium state, its obliquity i =
ic, the obliquity of the Cassini state, the amplitude of the
physical libration φ0, and the two second degree gravitational
harmonic coefficients J2 and C22 determine the ratio Cm/C

(Peale, 1976, 1988; Peale et al., 2002), where C is the prin-
cipal moment of inertia about the spin axis and Cm is that for
the mantle alone. The assertion is based on the assumption that
a liquid core or a core with a liquid outer layer would not follow
the physical librations of the mantle, and the latter will thereby
be of larger amplitude (e.g., Peale et al., 2002). Radar (Holin,
1988, 1992, 2003; Margot et al., 2003) will measure i and φ0
to high precision, whereas the MESSENGER (Solomon et al.,
2001) and BepiColombo (Anselmi and Scoon, 2001) spacecraft
will measure all four parameters, also with high precision, so it
is important that we ascertain any deviations from the equilib-
rium state that could confuse the interpretation of the upcom-
ing experiments. Already we have shown that Mercury’s spin
axis is unlikely to deviate significantly from the instantaneous
position of Cassini state 1 (Peale, 2005, 2006; Yseboodt and
Margot, 2006). Here we demonstrate that there will be long pe-
riod, finite amplitude forced librations in longitude in addition
to the 88-day forced libration with periods that are dominant in
the orbital variations. Damping by the tides and core–mantle in-
teraction continues to remove any traces of the ∼10-year free
libration.

In Section 2 we develop equations of motion that simulta-
neously include the orbital motion and the libration in longi-
tude. Mercury’s spin axis will be within 1′′ of Cassini state 1
(Peale, 2006; Yseboodt and Margot, 2006), where the obliq-
uity i is fixed at ∼2′ in the frame precessing with the orbit
(e.g., Peale, 2006). The small obliquity introduces a cos i as
a factor in the expressions for the torques about the spin axis.
This factor deviates less than 2 parts in 106 from unity, so for
our purposes here we assume Mercury’s spin axis is perpen-
dicular to the (fixed) orbit plane. The effects of energy dissi-
pation from relative motion between a liquid core and solid
mantle and tidal dissipation are included in these equations,
where the motion for no such dissipation is easily obtained by
setting appropriate coefficients to zero. These equations of mo-
tion are then modified to include the effects of the variations
in the semimajor axis a, eccentricity e, and the longitude of
perihelion � induced by the planetary perturbations of the or-
bit as given by the 20,000 year JPL Ephemeris DE 408 (E.M.
Standish, personal communication, 2005). Over this time span
of calendar years −10,000 to 10,000, the semimajor axis a

reaches maximum deviations from a constant mean value near
0.3870990 AU of about ±375 km, the eccentricity e changes
from ∼0.20317 to ∼0.20700 with fluctuations of ±0.000015,
the inclination I relative to the ecliptic decreases from ∼7.654◦
to ∼6.554◦ with fluctuations of ∼±0.00009◦, the argument
of perihelion ω increases from ∼−4.325◦ to ∼52.508◦ with
fluctuations ∼±0.0035◦, and the longitude of the ascending
node Ω decreases from ∼62.569◦ to ∼37.701◦ with fluctua-
tions of ∼±0.0009◦. The variation in the orbital inclination I

should not cause a significant forced libration, since the torques
from the Sun causing the libration are more or less perpendic-
ular to the orbit plane, the obliquity will follow the long-period
variations, and the short-period variations are small amplitude
and will have little effect on the near unity value of the cos i

factor discussed above. We will therefore neglect the variations
of I and assume the orbit plane lies in the ecliptic. The longi-
tude of the ascending node on the ecliptic Ω will be included
in the longitude of perihelion � = ω + Ω , where ω is the ar-
gument of perihelion. We can anticipate that the variations in
the semimajor axis a and in the rate of the precession of the
longitude of perihelion �̇ will cause variations in the intervals
between perihelion passages, and that variations in the orbital
eccentricity e and in a will cause variations in the instantaneous
and averaged gravitational torques. All three variations thereby
vary the averaged solar torque on Mercury’s axial asymmetry
and lead to long-period librations. The results of the calcula-
tions showing the nature of the long-period librations from the
orbital perturbations are given in Section 3. The 88-day physi-
cal libration is in all cases clearly superposed on the long period
librations, where the amplitude of the former can be unambigu-
ously determined. After the free libration is reduced to negligi-
ble amplitude, the long-period libration is dominated by periods
near 5.93 and 5.66 years, which are maximal in the power spec-
trum of the variations in a, e, and � (Table 1). A summary of
the results follows in Section 4.

2. Equations of motion

The potential energy of the Sun in Mercury’s gravitational
field up to the second degree terms is given by (e.g., Murray
and Dermott, 2000)

V = −GM�M

r

[
1 − J2

R2

r2

(
3

2
cos2 θ − 1

2

)

(1)+ 3C22
R2

r2
sin2 θ cos 2φ

]
,

where the position of the Sun is given by the ordinary spheri-
cal polar coordinates r, θ,φ relative to a principal axis system
fixed in Mercury with the z axis coinciding with the spin axis
and the x axis along the axis of minimum moment of inertia.
G is the gravitational constant, M� and M are the masses of the
Sun and Mercury, respectively, R is the radius of Mercury, and
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Fig. 1. Angles used in the discussion of libration in longitude. SX is directed
from the Sun toward the vernal equinox, where we assume Mercury’s orbit
plane coincides with the ecliptic. M denotes Mercury with x being the axis of
minimum moment of inertia.

J2 = (C − A/2 − B/2)/(MR2) and C22 = (B − A)/(4MR2)

are the second degree gravitational harmonic coefficients with
A < B < C being the principal moments of inertia. We shall
assume J2 = 6 × 10−5 and C22 = 1.5 × 10−5, where J2 is the
central value obtained by Anderson et al. (1987) but C22 is
one standard deviation above their central value. Fig. 1 shows
the geometry looking down on the plane of Mercury’s orbit
where φ is defined explicitly and where S is the position of
the Sun, the SX line is fixed along the vernal equinox of J2000,
ψm defines the orientation of the axis of minimum moment of
inertia relative to the inertial SX line, f is the true anomaly,
� = ω + Ω is the longitude of perihelion, with ω being the ar-
gument of perihelion. The angle ξ measures the orientation of
the axis x of minimum moment of inertia relative to the solar di-
rection. Since we are neglecting the variations in I , we choose
the ecliptic and Mercury’s orbit plane to be coincident. This lat-
ter assumption will not affect the forcing of libration, since the
relevant torques are perpendicular to the orbit plane whether or
not that plane has its real inclination.

With (x, y, z) = (r cosφ, r sinφ,0), Eq. (1) can be written

(2)V = −GM�M

r

[
1 + J2

R2

2r2
+ 3C22

R2

r2

(
x2

r2
− y2

r2

)]
.

We convert the body centered coordinates x, y to the iner-
tial coordinates X,Y by a rotation through angle ψm (x =
X cosψm + Y sinψm, y = −X sinψm + Y cosψm), with the re-
sult

V = −GM�M

r

[
1 + J2

R2

2r2
+ 3C22

R2

r4

(3)× [(
X2 − Y 2) cos 2ψm + 2XY sin 2ψm

]]
.

With kinetic energy

(4)T = M�M

2(M� + M)

(
Ẋ2 + Ẏ 2) + C

2
ψ̇2

m,

Lagrange’s equations (d/dt)(∂L/∂q̇k) − ∂L/∂qk = 0, with La-
grangian L = T −V and qk = any of X,Y,ψm, yield equations
of motion of the conservative system, which we normalize and
augment by distinguishing core and mantle and adding non-
conservative accelerations.

Ẍ = (1 + m)

[
− X
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,

Ÿ = (1 + m)
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,

ψ̈m = 6
C22

αr5Cm/C

(
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)

− KT

r6

[
n0

n
ψ̇m − a2

√
1 − e2
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]
− k′(ψ̇m − ψ̇c

)
,

(5)ψ̈c = k′ Cm

Cc

(
ψ̇m − ψ̇c

)
,

where m = M/M�, n = √
G(M� + M)/a3 is Mercury’s or-

bital mean motion, and C = αMR2 defines α. We shall choose
α = 0.34 hereinafter. All coordinates are normalized by a0,
which we choose to be 1 AU, and the normalization of time
is such that t increases by 2π in one terrestrial year. This nor-
malization is effected by dividing the equations obtained from
the Lagrange formulation by n2

0 = GM�/a3
0 , where angular ve-

locities are normalized by n0. In Eqs. (5), we have added terms
for the tidal torque and a torque from a liquid core–solid mantle
interaction to the equation of motion for the mantle, and added
an equation for the motion of the core. The subscripts m and c
refer to mantle and core, respectively.

The tidal torque is given by

(6)Ttide = 3k2GM2�R5

Q0r6

(
ψ̇m − ḟ

n

)
,

where k2 is the second degree potential Love number and Q0
is the value of the dissipation function appropriate to an 88-
day period of tidal oscillation. The form of Eq. (6) corresponds
to the dissipation function Q being inversely proportional to
frequency (e.g., Peale, 2005). Other tidal models appear in the
literature [e.g., a dissipative rheology based on the Maxwell
solid model (Hussmann and Spohn, 2004) and Q = constant
(Kaula, 1964)], but these alternative models can at most change
the time scale for damping the libration by a small amount.
Damping is dominated by the core–mantle interaction for rea-
sonable choices of the parameters (Peale, 2005), and chang-
ing the tidal contribution will not alter the results obtained
below. But such a change would considerably complicate the
analysis, while not providing further insight. We have used
ḟ = √

G(M� + M)a(1 − e2)/r2 in the penultimate of Eqs. (5).
Dividing Eq. (6) by Cmn2 for the normalization used in Eqs. (5)
0
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and using C = αMR2 lead to KT = (3k2R
3C)/(αQ0mCm)

(α = 0.34).
The torque exerted on the mantle by a liquid core is

(7)Tcore = −k
(
ψ̇m − ψ̇c

)
,

which is the simplest form appropriate for a coupling between
two concentric spheres separated by a viscous fluid. An equal
and opposite torque is applied to the core in the last of Eqs. (5).
Tcore is again normalized by Cmn2

0 leading to k′ = k/Cmn0,
with the other factor of n0 normalizing the angular velocities.
The core kinematic viscosity ν is related to k by equating the
time constant for the decay of a differential angular velocity
ψ̇m − ψ̇c obtained from Eqs. (5), with all torques except that at
the core–mantle boundary (CMB) set to zero, to the time scale
for a fluid with kinematic viscosity ν, rotating differentially in
a closed spherical container of radius Rc to become synchro-
nously rotating with the container at angular velocity ψ̇m. There
results CcCm/[(Cc + Cm)k] = Rc/(ψ̇mν)1/2 (Greenspan and
Howard, 1963), where Rc ≈ 0.75R (Siegfried and Solomon,
1974) is the radius of Mercury’s core. The solution of Eqs. (5)
yields the orbital motion and the physical and free libration as
damped by tides and core–mantle dissipation for a fixed orbit.
The average of these equations over an orbit period eliminates
the 88-day physical libration and allows the analytic determi-
nation of the time scales for the decay of the free libration
amplitude (Peale, 2005).

The effect of the planetary perturbations on the rotational
state of Mercury is indirect through the resulting variations in
the orbital elements. The variations in the normal to the orbit
plane are not expected to affect the state of libration in longi-
tude, which depends on torques from the Sun about Mercury’s
spin axis. We therefore consider only the variations in a, e,
and � . To determine the effect of the variation of e, a, and
� on the libration state we modify the above equations by fol-
lowing the procedure of Lee and Peale (2002), but simplify that
development to the planar case. These variations will be ac-
cording to the JPL Ephemeris DE 408, which has a span of
20,000 years centered approximately on calendar year 0. Con-
sistent with retrieving the variations from the ephemeris, we
choose the line SX in Fig. 1 to be toward the vernal equinox of
J2000, set the orbital inclination I = 0 and � = ω + Ω , where
the latter two angles are obtained from the ephemeris.

The additional terms in the equations of motion due to the
variation in e, a, and � are

(8)
dX

dt
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dt

∣∣∣∣
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∂�
�̇ ,

with similar expressions for Y and Ẏ . For the planar case we
are considering

X = r cos (f + �),

Y = r sin (f + �),

Ẋ = ṙ cos (f + �) − r(ḟ + �̇ ) sin (f + �),

(10)Ẏ = ṙ sin (f + �) + r(ḟ + �̇ ) cos (f + �),
where r , ṙ , and rḟ are in terms of a, e, and f (e.g., Murray and
Dermott, 2000). We also need

∂r

∂a
= r

a
,

∂r

∂e
=

[
− 2er

1 − e2
− r2 cosf

a(1 − e2)

]
,

∂ṙ

∂a
= − ṙ

2a
,

∂ṙ

∂e
= ṙ

e(1 − e2)
,

∂(rḟ )

∂a
= − rḟ

2a
,

(11)
∂(rḟ )

∂e
= r2ḟ (e + cosf )

a(1 − e2)2
=

√
G(M� + M)

a(1 − e2)

e + cosf

1 − e2
.

Generally, ṙ = (∂r/∂f )ḟ + (∂r/∂e)ė + (∂r/∂a)ȧ leading to a
more complicated expression, e.g., for ∂ṙ/∂a, but the corre-
sponding term in dẊ/dt has a factor (∂ṙ/∂a)ȧ and the ė and
ȧ terms in ṙ lead to second-order terms in the small perturba-
tive variations in the orbital elements. Hence, we retain only the
lowest-order terms in Eqs. (11). We also note that ∂X/∂� =
−Y , ∂Y/∂� = X, ∂Ẋ/∂� = −Ẏ , and ∂Ẏ /∂� = Ẋ when
higher-order terms in small variations are neglected.

From Eqs. (8)–(11) and the discussion following the latter,
we find that
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ȧ

+ dX

dt

∣∣∣∣
ė

+ dX

dt

∣∣∣∣
�̇

= X

a
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where we have neglected terms that are second order in ȧ, ė, �̇ ,
and where we have written the equations in normalized form.

Equations (12) are added to Eqs. (5) to account for the per-
turbations of the orbital parameters. For the numerical solution
of these equations, the JPL Ephemeris DE 408 has been kindly
provided by E.M. Standish as a table giving a, e, I,ω,Ω in
10-day intervals for 20,000 years centered on calendar year 0.
Spline fits to these data are used to provide values of the ele-
ments and their time derivatives at arbitrary times in a Bulirsch–
Stoer integration. Even though the free libration period is nearly
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10 years, the high sampling rate is necessary, because the forced
libration period is 88 days, and sampling many times during
this shorter period is necessary to prevent artifacts in the re-
sults.

3. Results

We start all the integrations with Mercury at perihelion with
the axis of minimum moment of inertia pointing toward the
Sun (ψ0

m − � = 0). The damping can be turned off by set-
ting k2/Q0 = ν = 0 leading to KT = k′ = 0 in Eqs. (5). The
initial libration state is then determined by the initial angu-
lar velocity ψ̇0

m, where the amplitude of the initial free libra-
tion can be selected by the magnitude of the deviation from
ψ̇0

m ≡ (1.5 + ε)n. The increment εn accommodates the angu-
lar velocity due to the forced and free libration as Mercury
passes perihelion. For a fixed orbit, ψ̇0

m can be tuned to com-
pletely eliminate any free libration, and the libration angle,
which we define as the deviation of the axis of minimum mo-
ment of inertia from the position it would have had if the rota-
tion rate were constant at the value of ψ̇m ≡ 1.5n, would exhibit
only the 88-day forced libration of about 60′′ amplitude for
(B −A)/Cm = 3.5 × 10−4. (This value of (B −A)/Cm is con-
sistent with our choice of C22 = 1.5 × 10−5 with Cm/C = 0.5
and α = C/MR2 = 0.34.) This is illustrated in Fig. 2, where the
top panel shows a small free libration amplitude with the 60′′
forced libration superposed, and the bottom panel shows the
free libration removed by adjusting the initial angular velocity.
In Fig. 3, we show the difference in the rotational angular ve-
locity from the resonant value for the librations shown in Fig. 2,
where the finite amplitude free libration leads to a modulation
at the free libration period. By averaging the equation for ψ̈m in

Fig. 2. The top panel shows the libration of Mercury for a fixed orbit where
the forced libration (88-day period) is superposed onto a small amplitude free
libration (9.2-year period). The bottom panel shows the elimination of the free
libration by an adjustment in the initial angular velocity.
Eqs. (5) over an orbit period we can determine the frequency of
small amplitude free libration as (e.g., Peale, 2005)

(13)ωlib = n

√
3(B − A)

Cm

(
7e

2
− 123e3

16

)
.

With (B − A)/Cm = 3.5 × 10−4, and n and e having their
current values, this frequency leads to a small amplitude free
libration period of 9.1921 years.

With the orbital parameters varying according the JPL
Ephemeris DE 408, it is impossible to eliminate long-period
librations completely. This is illustrated in Fig. 4, which shows
that the long-period fluctuation (the long wavelength variation)
changes phase with an increase in amplitude as the initial an-
gular velocity is increased or decreased relative to 1.500236n,
where the amplitude is (approximately) minimal. The minimum
libration is not well behaved like that in the top panel of Fig. 2,
but its amplitude and phase varies as shown in Fig. 4. This is a
result of the long-period libration having a spectrum of frequen-
cies imposed by the orbit element variations, and some residual
free libration not eliminated by our choice of initial conditions
in spite of our attempt to minimize the maximum amplitude.
The variations shown in Fig. 4 persist for the full 20,000 years
of the integration with no change in the maximum amplitude
when there is no damping.

In Fig. 5 we show the contributions of variations in each of
the orbital parameters separately for a 20-year period at the be-

Fig. 3. The deviation of Mercury’s spin angular velocity from the resonant value
〈ψ̇m〉 ≡ 1.5n for the examples in Fig. 2. The top panel shows the modulation
in the mean spin angular velocity from the finite amplitude free libration. The
absence of any variation of the mean in the bottom panel results from there
being no free libration. The truncation of the excursions to positive angular
velocity relative to the negative side results from the axis of minimum moment
being nearly aligned with the Sun for a range of true anomaly spanning the
perihelion. There is thereby little change in the angular velocity for this range
of true anomaly near perihelion.
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Fig. 4. The middle panel shows the minimum amplitude of the long-period
libration obtainable with Mercury initially at perihelion with the axis of min-
imum moment of inertia pointing toward the Sun with initial angular velocity
ψ̇0

m = 1.500236n. The top and bottom panels show the increase in amplitude
and shift in phase if ψ̇0

m is either below or above this value.

Fig. 5. The libration for the orbital elements varying individually according to
the ephemeris for initial conditions the same as those for the middle panel of
Fig. 4.

ginning of the ephemeris. The amplitudes of the longer period
librations for each variation are comparable.

Fig. 6 shows the power spectrum of the libration as perturbed
by the orbital element variations for the full 20,000 years with
initial conditions corresponding to the middle panel of Fig. 4.
The power spectrum was obtained from a fast Fourier transform
(FFT) algorithm taken from Press et al. (1986) with the data
Fig. 6. Power spectrum of the minimum amplitude libration whose early be-
havior is shown in the middle panel of Fig. 4. The dominant forced libration
period of 87.9686 days and its first three harmonics are marked with numbers 0
to 3. The free libration frequency is marked with f, and J and V denote promi-
nent frequencies due to the perturbations of Jupiter and Venus, respectively. The
frequency marked with E is due to the perturbation by the Earth.

multiplied by a Hanning window function. The relative pow-
ers and amplitudes of the six largest contributions to the power
spectrum are given in Table 1. The dominant contribution to
the spectrum corresponds to the forced libration at a period of
87.9686 days, the orbit period of Mercury. This is marked with
a 0 in Fig. 6, and the first three harmonics of this period are
marked 1, 2, and 3, respectively. The fundamental and its first
harmonic are listed in Table 1, where the ratio of the ampli-
tudes is 0.1028. This agrees with the ratio derived analytically
(Peale, 2005). The marked dominance of the 88-day forced li-
bration in the power spectrum is evident in all of the figures
where there is sufficient time resolution. The empirical mea-
surement of the amplitude of the 88-day forced libration for the
determination of the core properties will not be compromised
because the other signatures have a combination of long peri-
ods and small amplitudes.

The periods close to 5.93 and 5.66 years are the second and
third most dominant periods in the power spectrum of the libra-
tion. The 5.93-year period is dominant in the power spectrum
of the e variation and in that of � , and it corresponds to half
Jupiter’s orbit period (argument 2λJ − 2� , frequency indicated
with J in Fig. 6). The adjacent period of 5.66 years has only a
slightly lower amplitude and corresponds to the period of the
term with argument 2λ − 5λV + 3� (frequency indicated with
V in Fig. 6) in the disturbing function of Mercury’s orbit, where
the λs are the mean longitudes. The FFT of the libration along
with the FFTs of the a, e, and � variations, expanded near the
dominant 5.93- and 5.66-year periods in Fig. 7, show the match
of the frequencies in the orbital element variations with those
in the libration and the absence of the 5.93-year period in the
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Table 1
The largest contributions to power spectral density for ψm − � − 1.5〈n〉(t − t0) for the undamped, minimum amplitude case of the middle panel of Fig. 4, and the
top panel of Fig. 8, and for the damped case where the free libration component has been drastically reduced illustrated in the bottom panel of Fig. 8

Period Power/damped Amplitude/damped Forcing argument

87.9692 d 1.0000/1.0000 1.0000/1.0000 λ − �

5.9314 yr 1.2131 × 10−1/1.2132 × 10−1 0.3483/0.3483 2λJ − 2�

5.6634 yr 2.0368 × 10−2/2.0368 × 10−2 0.1427/0.1427 2λ − 5λV + 3�

9.1836 yr 1.4276 × 10−2/1.3862 × 10−4 0.1195/0.0118 Free
43.9846 d 1.0562 × 10−2/1.0561 × 10−2 0.1028/0.1028 2(λ − �)

504.1715 d 6.0342 × 10−3/6.0342 × 10−3 0.0777/0.0777 λ − 3λV + 2�

Note. The last column gives the argument of the forcing term in the orbital disturbing function that results in the particular periodic variation in the libration, where
the λs are mean longitudes with subscripts J and V referring to Jupiter and Venus, respectively, and the unsubscripted variables to Mercury.
Fig. 7. Power spectral densities of the libration, semimajor axis, eccentricity and
longitude of perihelion. The ordinate is useful only for comparing amplitudes
within each FFT. The 5.93-year period is half of Jupiter’s orbital period, and
the 5.66-year period results from the term in the perturbation by Venus with
argument 2λ − 5λV + 3� . The side bands on the Jupiter term are separated
from that frequency by 2nJ − 5nS, the great inequality in the Jupiter–Saturn
motion, where nJ and nS are the orbital mean motions of Jupiter and Saturn,
respectively.

variations of a. The ordinate is only meaningful for comparing
relative amplitudes within each particular FFT. The sidebands
of the 5.93-year peak are due to the 5:2 near resonance of the
mean motions of Jupiter and Saturn (great inequality). The 504-
day period in Table 1 due to Venus (frequency indicated with V
in Fig. 6) corresponds to argument λ − 3λV + 2� . Other terms
in the spectrum can also be identified with particular arguments
in the disturbing function, such as the 6.57-year Earth term
λ − 4λE + 3� (frequency indicated with E in Fig. 6), but these
are much less important in influencing the overall appearance
of the libration curve than the 5.93- and 5.66-year terms. The
frequency marked with an f in Fig. 6 corresponds to the free li-
bration period near 9.2 years. The period of 9.1836 years listed
in Table 1 is slightly different from the 9.1921 years derived
above from the averaged restoring torque, but such a small dif-
ference is expected because of the approximations involved in
the analytic value, and the non-constancy of the orbital elements
in the numerically derived period.

The free libration that persists turns out to be the result of
an imperfect choice of initial conditions in spite of our at-
tempt to select them to minimize the amplitude of the overall
libration. That this is so is demonstrated by reintegrating the
equations of motion with strong damping imposed. Plausible
values of k2/Q0 = 0.004 and the core viscosity ν = 0.01 cm2/s
(e.g., Peale, 2005) are increased to 0.04 and 30 cm2/s, respec-
tively, which changes the time scale for damping from 180,000
years (Peale, 2005) to about 3200 years. The augmentation of
the damping is necessary to demonstrate its effect in the short
20,000 year interval available from the ephemeris.

The damping applied to the minimum amplitude initial con-
ditions reduces the maximum amplitude slightly, but more im-
portantly, it reduces the spectral power at the free libration fre-
quency by more than a factor of 100, while leaving the power
in the remaining frequencies untouched as shown in Table 1.
This means that dissipation will ultimately remove all traces of
the free libration component, and Mercury’s libration in lon-
gitude will consist entirely of forced terms dominated by the
88-day forced libration modulated by the forcing terms from
the orbital variations. In Fig. 8 we show the last 500 years of the
integration for the undamped (top panel) and damped (bottom
panel) cases. The drastic reduction of free libration component
in the bottom panel is discernible by the more orderly periodic
motion. The 125-year modulation evident in both panels is the
beating between the 5.93- and 5.66-year forcing terms from the
orbital variations. This periodic in phase and out of phase com-
bination of the two dominant variations leads to minimum and
maximum overall amplitudes of ∼7′′ and ∼30′′, respectively,
for the long-period forced librations, on which the 60′′, 88-day
forced libration are superposed. The amplitude of the latter li-
bration is easily distinguished.

The offset in the center of libration in the lower panel leads
to a torque on the permanent deformation, averaged around the
orbit, that balances the averaged tidal torque that is attempting
to further slow the planet’s rotation. If we set ψ̇m = 1.5n + γ̇m,
the tidal torque (Eq. (6)) averaged around the orbit can be
written 〈Ttide〉 = −F(V + γ̇ /n), where V = 1.5 − f1(e)/f2(e)

and F = 3k2n
4R5f2(e)/GQ0 with f1(e) = (1 + 15e2/2 +

45e4/8 + 5e6/16)/(1 − e2)6 and f2(e) = (1 + 3e2 + 3e4/8)/

(1 − e2)9/2 (Peale, 2005). The averaged restoring torque on
Mercury’s permanent deformation for a small amplitude free
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Fig. 8. The top panel shows the last 500 years of the full 20,000-year undamped
integration covered by the ephemeris where initial conditions are those yielding
the minimum amplitude of free libration shown in the middle panel of Fig. 4.
The bottom panel shows the same integration but now with damping with a
3200-year time scale applied. The center of libration is shifted ∼−30′′ by the
tidal torque (see text). The variation in the amplitude in the bottom panel with a
125-year period results from the beat between the dominant 5.93- and 5.66-year
forcing periods. The amplitude of the long period forced libration, with the
∼60′′ , 88-day forced libration superposed, varies thereby between ∼7′′ and
∼30′′ .

libration is Cmω2
libγm (Eq. (13)), where γm is the angular sepa-

ration of the axis of minimum moment of inertia from the direc-
tion to the Sun when Mercury is at perihelion. So if we neglect
the small value of γ̇m in the expression for 〈Ttide〉, balancing the
averaged tidal torque with the torque on the permanent defor-
mation leads to the equilibrium value of γm of

(14)γ
eq
m = −FV

3n2(B − A)(7e/2 − 123e3/16)
≈ −30′′,

where the numerical value is calculated from the assumed value
of C22 = (B − A)/(4MR2) = 1.5 × 10−5, k2/Q0 = 0.04 and
a representative value of e within the range 0.203 � e � 0.207
(the change in e during the 20,000 years). This value is equal to
the offset of the center of libration in the bottom panel of Fig. 8.

If we choose initial conditions resulting in a large free li-
bration as in Fig. 9, the 9.2-year period along with the 88-day
forced libration period and its harmonics will dominate the
power spectrum, and the consequences of the orbital perturba-
tions will appear as fluctuations on top of the free and forced
88-day librations with amplitudes like those shown in the bot-
tom panel of Fig. 8.

4. Summary

The planetary perturbations of Mercury’s orbit vary the
intervals between perihelion passages and vary the restoring
torque averaged around the orbit that keeps the axis of min-
imum moment of inertia close to alignment with the direction
Fig. 9. Large amplitude free libration with superposed 88-day forced libration
showing the dominance of these periods in this parameter range. The deviation
of the angular velocity from the mean value for this large libration is also shown.
The effects of the planetary perturbations will modulate the shape of the free
libration curve with a maximum deviation of approximately 30′′ .

to the Sun as Mercury passes perihelion. These variations main-
tain forced librations in longitude with periods derived from the
planetary perturbations. The 9.2-year free libration should be
completely damped by tides and core–mantle dissipation, un-
less there is an unforeseen excitation mechanism. The 88-day
forced libration in longitude of amplitude ∼60′′ is always su-
perposed on the long-period librations, and measurement of its
amplitude by radar and by spacecraft observations to constrain
the properties of Mercury’s core will not be compromised. The
power spectrum of the minimum amplitude longitude libration
is dominated by the 88-day forced libration period and the peri-
ods of 5.93 and 5.66 years, where the latter periods are dom-
inant in the power spectra of the variations in a, e, and � .
The 5.93- and 5.66-year oscillations are alternately in and out
of phase, which causes the maximum amplitude of the long-
period forced librations to vary with a period ∼125 years. The
maxima and minima of the extremes in the long-period forced
libration amplitudes are ∼30′′ and ∼7′′, respectively, during the
125-year cycle. Other frequencies in the power spectral den-
sity of the librational motion are identifiable with frequencies
in the variations of the orbital elements and in turn with specific
combinations of mean longitudes of Mercury, Venus, Earth, and
Jupiter.

For a large free libration amplitude, the free libration pe-
riod and the 88-day forced libration periods would dominate
the power spectrum, but the fluctuations induced by the or-
bital perturbations would modify the shape of the free libration
curve slightly. Tides and a liquid core–solid mantle interaction
damp larger amplitude free librations down to the forced fluctu-
ations induced by the variations in the orbital elements in a time
short compared to the age of the Solar System, so we expect no
contribution at the 9.2-year free libration period in Mercury’s
librational motion. If this supposition is correct, Mercury’s li-
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brational motion will consist of a combination of the 88-day
forced libration and long-period forced librations from the or-
bital elements dominated by the 5.93- and 5.66-year periods.
Since the phases and amplitudes of all forcing terms are known,
the long-period libration amplitude, which lies between ∼7′′
and ∼30′′ is predictable at any time. Any deviation from this
predicted state would imply that there is a free libration compo-
nent of unspecified excitation.
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