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Abstract. The 3:2 spin-orbit resonance between the rotational and orbital motions of Mercury (the periBgs-66.646 and

P, = 87.969 days respectively) results from a functional dependance of the tidal friction adding to a non-zero eccentricity and
a permanent asymmetry in the equatorial plane of the planet. The upcoming space missions, MESSENGER and BepiColombo
with onboard instrumentation capable of measuring the rotational parameters stimulate the objective to reach an accurate theory
of the rotational motion of Mercury. For obtaining the real motion of Mercury, we have used our BJV model of solar system
integration including the coupled spin-orbit motion of the Moon. This model, expanded in a relativistic framework, had been
previously built in accordance with the requirements of the Lunar Laser Ranging observational accuracy. We have extended
the BJV model by generalizing the spin-orbit couplings to the terrestrial planets (Mercury, Venus, Earth, and Mars). The
updated model is called SONYR (acronym of Spin-ONbiBodY Relativistic model). As a consequence, the SONYR model

gives an accurate simultaneous integration of the spin-orbit motion of Mercury. It permits one to analyfietbetdamilies

of rotational librations and identify their causes such as planetary interactions or the parameters involved in the dynamical
figure of the planet. The spin-orbit motion of Mercury is characterized by two proper frequencies (arselys.847 yrs

and¥ = 1066 yrs) and its 3:2 resonance presents a second synchronism which can be understepih-asb# secular
resonance(Il = 278898 yrs). A new determination of the mean obliquity is proposed in the paper. By using the SONYR
model, we find a mean obliquity of 1.6 arcmin. This value is consistent with the Cassini state of Mercury. Besides, we identify
in the Hermean librations the impact of the uncertainty of the greatest principal moment of iGg¢N&2J on the obliquity

and on the libration in longitude (2.3 milliarcsec and 0.45 arcsec respectively for an increase of 196 iviRhealue). These
determinations prove to be suitable for providing constraints on the internal structure of Mercury.
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1. Introduction expected to be trapped in a Cassini state (Colombo 1966; Peale

Before 1965, the rotational motion of Mercury was assum 1969, 1973). The orbital and rotational parameters are indeed
to be synchronous with its orbital motion. In 1965, Pettengg aiched in such a way that the spin pole, the orbit pole, and

. ) . e solar system invariable pole remain coplanar while the spin
& Dyce discovered a 3:2 spin-orbit resonance state by usip y P P P

) . d orbital poles precess. The reader may find in Balogh &
Earth-based radar observations (the Mercury’s rotation peri L .
is P, = 58646 days while the orbital one &, = 87.969 days). Sl mpieri (2002) a review report on the present knowledge of

. . ercury whose the interest is nowadays renewed by two up-
This surprising resonance results from a non-zero eccentrég-ming missions: MESSENGER (NASA, Solomon et al. 2001)
ity and a permanent asymmetry in the equatorial plane of tﬁﬁd BepiCoIombb (ESA, ISAS, Anselin & Scoon 2001)'

e 1 1 .

planet. In addition, the 3:2 resonance strongly depends on . . .
functional dependance of the tidal torque on the rate of theC%- Our work deals with the physical and dynamical causes

bration in longitude. Moreover the 3:2 resonance state is pF at contribute to induce librations around an equilibrium state
served by the tidal torque (Colombo & Shapiro 1966). Th

main dynamical features of Mercury have been established il
ing the 1960s in some pioneer works such as Colombo (19
Colombo & Shapiro (1966), Goldreich & Peale (1966) an
Peale (1969). Goldreich & Peale (1966) notably studied t
probability of resonance capture and showed that the 3:2
tio is the only possible one for a significant probability of ca
ture. In addition, in a tidally evolved system, the spin pole

efined by a Cassini state. In order to wholly analyze the
in-orbit motion of Mercury and its rotational librations, we
ed a gravitational model of the solar system including the
oon’s spin-orbit motion. The framework of the model has
en previously constructed by Bois, Journet & Vokrouhfick”
E%:]V model) in accordance with the requirements of Lunar
_aser Ranging (LLR thereafter) observational accuracy (see
F} r instance a review report by Bois 2000). The approach of
the model consists in integrating tiNebody problem on the
Send gprint requests toN. Rambaux, basis of the gravitation description given by the Einstein’s gen-
e-mail: rambaux@obs . u-bordeauxl. fr eral relativity theory according to a formalism derived from the
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first post-Newtonian approximation level. The model is solved

by modular numerical integration and controlled in function of

the diferent physical contributions and parameters taken into

account. We have extended this model to the integration of the

rotational motions of the terrestrial planets (Mercury, Venus, Apoapse
Earth, and Mars) including their spin-orbit couplings. The up-

dated model is then called SONYR (acronym of Spin-Oxbit

bodY Relativistic model). As a consequence, using SONYR,

the N-body problem for the solar system and the spin mddg. 1. Geometry of the spin-orbit coupling problemis the radius
tion of Mercury are simultaneously integrated. Consequenﬂ?‘:tor’f the true anomaly andlis the characteristic angle of rotation.
we may analyze and identify thefflirent families of Hermean

rotational librations with the choice of the contributions at owercury’s dynamical figure combining the principal moments

Periapse

disposal. of inertiaA, B, andC. Equation (1) becomes:
Starting with the basic spin-orbit problem according to 1 3
Goldreich & Peale (1966), we have computed a surface @f _n2(§) a®sin2@p-f)=0 2
r

section for the Mercury’s rotation showing its very regular

behavior. We have calculated again the proper frequency Yaneren is the orbital mean motiorf, andé as defined above.
the spin-orbit resonance state of Mercury. Using our model, &he numerical integration of Eq. (2) yields to Fig. 2 show-
important part of the present study deals with the main péng stroboscopically, i.e. once point per orbit at the periapse,
turbations acting on the spin-orbit motion of Mercury such agrious trajectories of the phase portrait of Mercugyapd

the gravitational figure of the planet as well as the planetatyndé/dt on the axes andy respectively). Figure 2a illustrates
effects and their hierarchy. A detailed analysis of the resuthe diferent quasiperiodic librations around the 1:2, 1:1 (syn-
ing rotational librations due to thesdéfects is presented andchronous), 3:2, and 2:1 rotation states while Fig. 2b shows a
described in the paper. A new determination of the Hermeanom of the present 3:2 resonance state for Mercury. Let us
mean obliquity is also proposed. Moreover, we identify in theotice that in the 1:2 rotation state, the two libration areas are
Hermean librations the impact of the variation of the greatesifted byr/2 with respect to the other rotation states. The for-
principal moment of inertia on the instantaneous obliquity amder rotation rate of Mercury was higher and the planet could
on the libration in longitude. Such a signature gives noticeallave experienced large and chaotic variations in obliquity at
constraints on the internal structure of Mercury. some time of the past (Laskar & Robutel 1993). Due to its
slowing down by tidal despin, the Mercury’s rotation has then
encountered dierent resonance states, from higher orders to
the one trapped in the present state. Goldreich & Peale (1966)
According to Goldreich & Peale (1966), we consider the spiitave shown that this present state (the 3:2 resonance) was the
orbit motion of Mercury with its spin axis normal to the orbitafirst one with a substantial probability of capture. This one in-
plane. The orbit is assumed to be fixed and unvariable (seméed depends crucially on the functional dependence of the
major axisa and its eccentricity). The position of Mercury tidal torque acting on the spin-orbit motion. This dependence
is determined by its instantaneous radiushile its rotational is expressed by the variation rate of the longitude libration an-
orientation is specified by the angleThe orbital longitude is gley as defined below. In the end, the stabilization of Mercury
specified by the true anomally while the anglet — f mea- at the 3:2 spin-orbit resonance is due to permanent asymme-
sures the angle between the axis of least moment of inertiaigfon the equatorial plane, as well as its non-zero eccentricity
Mercury and the Sun-to-Mercury line (see Fig. 1). Accordingqual to 0.206 (Colombo 1966; Colombo & Shapiro 1966).

to these assumptions, the dynamical problem of the spin-orbit According to the Chirikov resonance overlap criterion
motion of Mercury is reduced to a one-dimensional pendulurf:979), the chaotic behavior appears when the asphericity of

2. Geometry of the spin-orbit coupling problem

like equation as follows: the body is larger than the following critical value:
Cé+§(B—A)G'Z|O sin2¢-f)=0 (1) o = _ (3)
2 r 2+ Vide

where G is the gravitational constanil, the solar mass, where e is the orbital eccentricity. In the case of Mercury,

andA, B, andC the principal moments of inertia of Mercury.a — 00187 is lower than the critical valug®' = 0.2701. As

This equaFlon Of_ motlon_ has only a smgle. dggree of freedot{lnconsequence, the spin-orbit behavior is regular. The zoom in
for the spin-orbit coupling, the characteristic angle of rot

. Y ) . Effig. 2b shows indeed that the separatrix surrounding the 3:2
tion 6, but depends exphutly on time thTOUQh the dIStamceresonance state is very small. The width of the associated
to the planet and the non-uniform Keplerian motion of the trU8 ~otic zone is then estimated to the order o qWisdom

anomalyf. As a consequence, itis a p“’b'ef.“ not reducible by 5 1984). Consequently, tidal friction pulls Mercury accross
quadrature and Eg. (1) is non-integrable (Wisdom 1987). the chaotic separatrix in a single libration period.

In order to know the structure of the phase space of the From Eq. (1), it is possible to obtain an integrable ap-

Mercury’s rotation, a surface of section for its spin-orbit Couﬁrox_imated equation using the spin-orbit resonance, the spin
pling is very useful. Let be = @ the asphericity of the rate @ being commensurable with the mean orbital motion
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Fig. 2. Surface of section of the Mercury’s spin-orbit couplirg<£ 0.0187 e = 0.206). The rate of change of the orientation is plotted versus
the orientation of Mercury defined by the anglat every pericenter passage. The spin axis is constrained to be normal to the orbital plane. The
plot a) makes in evidence theftierent quasiperiodic librations around the 1:2, 1:1 (synchronous), 3:2, and 2:1 rotation states. Bheslot

zoom of the real 3:2 resonance state of Mercury. The chaotic zone is microscopic and non visible at this scale.

Following Murray & Dermott (2000), by introducing a new
variabley = 6 — pnwherep parametrizes the resonance ratio
(p = % in the case of Mercury), one may expand the equation
in form-like Poisson series. Taking into account that< n,
one averages all the terms over one orbital period, and finally
obtain the following equation:
j‘/+§nzB_AH(p,e)sin2y=0 (4)

2 c
whereH(p, €) is a power series in eccentricity. In the case of
Mercury, this expression is written as follows:

Y (as)

87.969 days
-20 +

H (§ e) = Ze_ 1_23e3 (5) 25 . . . .

2’ 2 16 0 50 100 150 200 250
t (days)

Eé?]ai”sy, the proper frequency of the Mercury’s spin-orbit molfig. 3. The spin-orbit solution of Mercury in the planar case (Eq. (7))

plotted over 250 days. Arcseconds are on the vertical axis and days on

B_A i the horizontal axis. Short-term librations have a period of 87.969 days

wo = N|{3——H(p. &) (6) (the orbital period of Mercury) and 42 as of amplitude.
c
which by using the values listed in Table 2 gives the proper
period of 15830 yrs. to Giampieri, private communication). The anglelescribes
Balogh & Giamperi (2002) developed Eq. (2) and obtainedi Periodic behavior with a period equal to the revolution of
the following expression: Mercury. The amplitude of 42 arcsec (as) depends on the value
of ag. The behavior of thes angle is nicely matched by the
¥+ ag Z Go(®)sin[2y + (1-gM] =0 (7) approximate formula of Jhen & Corral (2003):
q

, . . , quﬁosinM + ¢15in2M (8)
where theGyo codficients are eccentricity functions define
by Kaula (1966). TheG,p; codficient is equal toH(g,e). wheregy = ao(Gz00 — Go02) andgs = 2(Gz0-1 — Gzo3). The
ag = %% = 1.76 x 10~ for the Mercury case. Figure 3authors noticed that the ratio of the two amplitudgsgnde,)

presents then the numerical solution of the formula (7) (thanttees not depend on tlag parameter, an{ = % = -9.483.
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However, the above equations describe a spin-orbit motion The BJV model, as described above, has been extended to
of Mercury where the spin axis is normal to the orbital plarthe spin-orbit integration of the terrestrial planets (Mercury,
while the orbital motion is Keplerian. Venus, Earth, and Mars). This new model is henceforth called

SONYR (for Spin-OrbitN-bodY Relativistic model). In the
present paper framework, the SONYR model is devoted to the

3. The extended BJV model: SONYR detailed analysis of the complete spin-orbit motion of Mercury.
The simultaneous integration of the solar system, includ-
3.1. Theory ing the Mercury’s spin-orbit motion, uses a global reference

. . . system given by the solar system barycenter. Nevertheless,
In order to wholly analyze the spin-orbit motion of Mercuryey i recall that local dynamically non-rotating frames show
and its rotational librations, we have enlarged a gravitationalg,,,, (de Sitter) rotation with respect to the kinematically
model (called BJV) of the solar system including the Moong, rotating frames. As a consequence, the reference frame
spin-orbit motion. The accurate theory of the Moon’s spin-orhf. 1o Mercury’s rotation is fiected by a slow precession of

motion, related to this BJV model, was constructed by Boigg 4yes transported with the translational motion of Mercury.
Journet & Vokrouhlicly'in accordance with the high accuracy, he Earth’s case, the de Sitter secular precession of the

of the LLR observations (see previous papers: Bois et al. 1992; 11, reference frame is close to 1.92cgs(see Fukushima

Bois & Journet 1993; Bois & Vokrouhlick1995; Bois et al. 1991: Bizouard et al. 1992; Bois & Vokrouhligk1995).
1996; Bois & Girard 1999). The approach of the BJV model,sequently, the real rotation of Mercury has not to be ex-
consists in integrating thi-body problem (including transla- presqeq in an inertial system fixed in space, but in a local dy-
tional and rotational motions) on the basis of the gravitation dﬁémically non-rotating frame fallen down in the gravitational

scription given by the Einstein's general relativity theory. Thga 1y of the Sun. Because of the proximity of Mercury to the
equations have been developped in the DSX formalism pegy, jts de Sitter precession may be expected quite significant.

sented in a series of papers by Damour et al. (Damour et al. . .

1991, 1992, 1993, 1994). For purposes of celestial mechantb “;g::ie:,:j‘.tht?]esgN\gsenr:gge.:]anc?s'f”\lznigﬁ.'znmeri]o.?af{%kne
ics, to our knowledge, it is the most suitable formulation ofth:§ the d fiL:1iti (2 fr erpnI b rln pr irV(\;t Id ?Wi}EII’Ilr It
post-Newtonian (PN) theory of motion for a systerm\bérbi- € detinition of reterence irames required to dea ol

trary extended, weakly self-graviting, rotating and deformabtl'g nal motions combined with translational ones, and (i) the

bodies in mutual interactions. The DSX formalism deriverfﬁ]Odern knowl_edg(_e of dynamical systems for studiing Iibra_-
from the first post-Newtonian approximation level, gives thtéonseitseggr?sé'g.e”i‘g;;owgaogznacfa?;dlﬂgtt?héhri:;é?ma:gt
post-Newtonian representation of the translational motionsRIF> ! s ( ) s IS

the bodies as well as their rotational ones with respect to t gt\i/vtr?m??hbuft lrlather tl\l\llev\xlttozl;’:lr;]-lllgas,xre; uﬂngvfrrimn:r?k? A
locally transported frames with the bodies. cation of the fully post-Newtonian ( ) framework. N

Gravitational fields of th ded bodi gresentpaper, we deal with the Newtonian-like librations (clas-
_ Gravitational fields of the extended bo e are parametgjz,| physical librations), while the formally relativistic contri-
ized in multipole moment expansionsMf, S{*) define the b

! ; - utions (relativistic librations and de Sitter precession of the
mass an.d spin Blf_inchet—Damour multlpole_s chargctenzmg reury’s reference frame) will be analyzed in a forthcom-
PN gravitational field of the extended bodies whi@(Hf) paper
are tidal gravitoelectric and gravitomagnetic PN fields. Becaus«g '
we do not dispose of dynamical equations for the quadrupole
momentsMQb, and although the notion of rigidity faces con3.2, Method
ceptual problems in the theory of relativity, we have adopted
the “rigid-multipole” model of the extended bodies as knowhhe modelis solved by modular numerical integration and con-
from the Newtonian approach. Practically this is acceptadf@lled in function of the dierent physical contributions and
since the relativistic quadrupole contributions are very smaarameters taken into account. TRebody problem (for the
Consequently and because it is conventional in geodynami@nslational motions), the rotational motions, the figure-figure
research to use spherical harmonics analysis of the gravi@d tidal interactions between the required bodies are simul-
tional fields with the corresponding notion of harmonic coetaneously integrated with the choice of the contributions and
ficients Cﬁ’]’ Sﬁ\n), the quadrup0|e momenmg\b have been ex- truncations at-OUr dlSposal-. For instance, the uppgr limits of
pressed in those terms, according to reasons and assumptiopgxtended figure expansions and mutual interactions may be
given in Bois & Vokrouhlick/ (1995). Gravitational figures aschosen as follows: up tb = 5 in the Moon case, 4 for the
well as the figure-figure interactions of the bodies are th&®rth, 2 for the Sun while only the Earth-Moon quadrupole-
represented by expansions in spherical harmonics (Bordef@€&ipole interaction is taken into account (see previous papers).
1978; Shutz 1981). Moreover, internal structures of solid déhe model has been especially built to favor a systematic anal-
formable bodies, homogeneous or with core-mantle interfac¥sis of all the &ects and contributions. In particular, it permits
are represented by several terms and parameters arising ffoghseparation of various families of librations in the rotational
tidal deformations of the bodies (both elastic and anelastif)otions of the bodies.

More details and references on these topics are given in the The non-linearity features of theftérential equations, the
above quoted papers related to our works concerning the tbegree of correlation of the studieétect with respect to its

ory of the Moon’s spin-orbit motion. neighbors (in the Fourier space) and the spin-orbit resonances
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Table 1. Our initial conditions at 07.01.1969 (equinox J2000).

Mercury
Rotation angles
W = 48386deg ¢ = 0.0degday <y > = -0.34010° degday @)
g = 7005deg & = 0.0degday <> = -0.235107 degday @)
¢ = 299070deg ¢ = 6.138505 defglay () o = l1l.6amin@)

(a) Mean values derived from the SONYR moddl) Seidelmann et al. (2002).

(in the Moon and Mercury’s cases), make it hardly possibtait contain ambiguities and redundancies discussed in previ-
to speak about “pure”féects with their proper behavior (evenous papers (Bois 1995, 2000). Formally, the free librations are
after fitting of the initial conditions). Theffacts are not abso- periodic solutions of a dynamical system artificially integrable
lutely de-correlated but relatively isolated. However, the uséoly a convention of writing related to specific rates of the spin-
technique (modular and controlled numerical integration, diérbit resonance, for instance 1:1), whereas the forced librations
ferentiation method, mean least-squares and frequency analpress, in space phase, quasi-periodic solutions around a fixed
sis) gives the right qualitative behavior of affiext and a good point (the system is no longer integrable). Moreover, any sta-
guantification for this ffect relative to its neighbors. In the casble perturbed rotation of celestial solid body contains imbricate
of the particular status of the purely relativistiffedcs, their librations of diferent nature, and those are too strongly over-
guantitative behaviors are beyond the scope of the presentlppped to keep the traditional classification.
per and will be discussed in a forthcoming work. When a ro- In the present terminology, the libration nature, its cause
tational dfect is simply periodic, a fit of the initial conditionsand its designation are linked up. Two great libration fami-
for a set of given parameters only refines without really chaniies serve to define the physical librations, namely oéen-
ing the dfect’s behavior. The amplitudes of librations plottedal librations and theinetical librations. They simply corre-
in Figs. 11 and 12 are then slightly upper bounds. spond to a variation energy, potential or kinetical respectively.
The precision of the model is related to the one requir€dr libration sub-classes, the designation method is extensive
by the theory of the Moon. One of the aims in building theo any identified mechanism (see more details in Bois 1995).
BJV model (at present included inside SONYR) was to takéhe terminology permits easily the separation of various fami-
into account all phenomena up to the precision level resultitigs (see the Moon’s case described in a set of previous papers).
from the LLR data (i.e. at least 1 cm for the Earth-Moon disFhese librations are calledirect when they are produced by
tance, 1 milliarcsec (mas) for the librations). For reasons wirques acting on the body'’s rotation. They are caifetirect
consistency, several phenomena capable of produdiiegte when they are produced by perturbations acting on the orbital
of at least 0L mas had been also modeled (the resulting librazotion of the body. Indirect librations derive from spin-orbit
tion may be at the observational accuracy level). Moreover,douplings.
order to justify consistence of the Moon’s theory, this one had A specificity of the SONYR model with its method of anal-
been adjusted to the JPL ephemeris on the fifslyils up to a ysis is to isolate the signature of a given perturbation. The
level of a few centimeter residuals. In the other hand, the iIBONYR model allows indeed the identification of relation-
ternal precision of the model is only limited by the numericahips between causes anffeets including interactions be-
accuracy of the integration. Thus, in order to avoid numeric@een physics and dynamics, such as the dynamical signature
divergence at the level of our tests for Mercury, computation$a core-mantle interaction (callegntrifugal librations.
have been performed in quadrupole precision (32 significant

figures, integration at a 1 internal tolerance). o .
3.4. Parameters and initial conditions

In the computations presented in the paper, the required dy-
namical parameters and general initial conditions come from
In order to de-correlate theftiérent librations of Mercury, we the JPL DE405 ephemeris (Standish 1998). However, concern-
use the terminology proposed in Bois (1995), which is suiiag the parameters related to the Mercury’s rotation (second-
able for a general and comparative classification of rotatiorigree spherical harmoni€o and Cy,), which are not in-
motions of the celestial solid bodies. This terminology deriveguded in the JPL ephemeris, our model uses those given by
from a necessary re-arrangement of the lunar libration familiggderson et al. (1987) (see Table 2). Besides, up to now it does
due to both progress in the Moon’s motion observations (LLRpt exist any ephemeris of the Mercury’s rotation. As a conse-
and modern knowledge of dynamical systems. guence, to build initial conditions for the Hermean rotation (de-
Traditionally, the libration mode called physical libration iscribed by an Eulerian sequence of angleg and¢ defined
split up according to the conventional dualisfarced-free”.  below in Sect. 4.1), we use the following principle: assuming
The forcedphysical librations are generally related to gravitahe polar axis of Mercury normal to its orbital plane, we obtain
tional causes while théee librations would be departures ofy = Q andd = i whereQ andi are respectively the ascending
the angular position from an equilibrium state. These cuttingsde and the inclination of the orbit of Mercury on the Earth

3.3. Terminology
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Table 2. Parameters of Mercury. thatl is the angular momentum expresse®ixyzand is related
to the instantaneous rotation vectoas follows:
Mercury
Bulk quantities =)o ©)

Mass GMs,) = 4.9125x 10710 (a) where(l) is the tensor of inertia for the body. According to clas-
Equatorial radius (km) = 2439 b) sical assumptiong)) is reduced to three principal moment of

J = (6.0+20)x 1075 (b) inertiaA, B, andC. The gravity field of Mercury is essentially
Coo = (L0+05)x10° (b) ynknown. The tracking data from the three fly-by of Mariner 10
C/MR _ 034 ¢ in 1974-75 have been re-analyzed by Anderson et al. (1987) to

give a low accuracy estimate of the normalizedffiomntsC,q
andC,;, (see Table 2, values are expressed in the body-fixed
frame of the principal axes of inertia). The principal moments
Tab_le 3._Our re_s_ults for the _spiﬂ-orbit motion of Mercury. The spingf inertia A and B are then infered fronC,o and Cy, by the
orbit peI’IOd verifies the relatior? = 2P/{ = 3P¢ fOIIOWIng formulae (Ferrarl et al 1980)

(a) JPL; ) Anderson et al. (1987)c) Milani et al. 2001.

Mercur A C
Spin-orbit charactyeristic period MRZ Cao—2C22 + MR2 (10)
@ (1st proper frequency) = 15.847 yrs
¥ (2nd proper frequency) = 1066 yrs i — Con 4 2Cor + L
II (orbital precession) = 278898yrs MR2 20 27 MR
lz; E;)c:?;tt?;r?:lr::?:r)iod) _ 2;:222 g‘gz Letus note_ that the |oarame§é[MR2 is not const_rai_ned within
P (spin-orbit period) —  175.95 days these relations. We present in Sect. 4.2 the variatioy bIR?

by analyzing its signature into the librations of Mercury.

equatorial plane (which is the reference frame used 4 The librations of Mercury
the DE405 epheme_ris). The long axis of Mercury being pointgf_jl_ Planetary perturbations
towards the Sun at its periapse allows to fix ¢ghengle of polar
rotation. The value of is found in Seidelmann et al. (2002) For Mercury assumed to be a rigid body reduced to three
We use at las = 0 andé = 0; these two variables reach tooblateness cdgcients, the general expression for a torque
mean values generated by the complete spin-orbit problemcoiming from a disturbing point mass at the vectorial posi-
Mercury: —0.340x 10°° degday and-0.235x 10~/ degday tionru (r is the instantaneous distance) is written as follow:
respectively. The numerical integrations presented in the paper 36m\ /a3
start from these initial conditions related to the planar probleRy, = (—3) (—) ux(u (11)
for Mercury; they are listed in Table 1. Departure from the pla- a r
nar case is understood as the integration of physics includgerea is the mean distance between the two bodies. Such
in SONYR. a torque due to the Sun is the dominant one acting on the
In the other hand, for the computations carried out in thistational motion of Mercury. The solar torque is indeed re-
paper, the global reference frar@X’Y’Z’ is given by a ref- sponsible of the global dynamical behavior of the rotation of
erence system centered on the solar system barycenter, fiyeglcury. Due to Venus, the resulting torque is about of the or-
on the ecliptic plane, and oriented at the equid@000. The der of 1¢ times smaller, that is quite negligible.
rotational motion of Mercury is evaluated from a coordinate Figure 4 presents the rotational motion of Mercury includ-
axis system centered on the Mercury’s center of mM@gg ing only the solar torque in the rotational equations and taking
relative to a local dynamically non-rotating reference framgto account simultaneously the whalebody problem for the
OXYZ whose axes are initially co-linear to those®X'Y’Z’.  Sun and the planets (the planetary interactions inducing indi-
In the framework of the present paper without purely relativisect efects on the rotation of Mercury). In this figure, the Euler
tic contributions, let us note that axes@KY Zremain parallel anglesy, 6, ¢ related to the 3-1-3 angular sequence describe
to those ofO’X"Y’Z". the evolution of the body-fixed axé3xyz with respect to the
The N-body problem for the planets of the solar systermxes of the local reference fraf@XY Z Let us recall the def-
and the Mercury’s spin-orbit motion are simultaneously intéaition used for these angleg:is the precession angle of the
grated in the SONYR model. Concerning the rotational equaelar axisOz around the reference ax@®z, 6 is the nutation
tions written in a relativistic framework, the reader may refer tangle representing the inclination &z with respect toOZ,
Bois & Vokrouhlicky (1995). In a Newtonian approach, thesandy is the rotation aroun@®zand conventionally understood
equations amount to the classical Euler-Liouville equations a$ the rotation of the greatest energy (it is generally called the
the solid rotation (see e.g. Goldstein 1981). We follow the foproper rotation). The axis of inertia around which is applied the
malism and the axiomatic expanded in Bois & Journet (1998)oper rotation is called the axis of figure and defines the North
and Bois (1995) for the definition of theftirent rotational el- pole of the rotation (Bois 1992). Let us remark that in Fig. 4
ements as well as the used terminology. Let us simply preci@e other figures involvingy as well) plotted over 3000 yrs,
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Fig. 4. The rotational motion of Mercury expressed in the ecliptic reference f@X¥Zby using the 3-1-3 Eulerian sequenge{, ¢), and

plotted over 3000 yrs. Degrees are on the vertical axis and years on the horizontal axis. The value of 278 898 yrs for the secular part of
they angle is related to the planetary interactions. The period of 1066 yrs in the three angles is the libration of the spin-orbit secular variable.
The period of 15.847 yrs in theangle is the proper frequency in longitude of Mercury.

48.50

we have removed the mean rotation of &8 days in thep 18,00 [
angle in order to better distinguish the librations. We may then Pl
clearly identify the first proper frequency of 15.847 yrs (tobe B 4650
compared to the analytical determination, namely 15.830 yrs <~ %
given in Sect. 2). 500

They angle expresses the nodal precession of the equato- 44.00
rial plane of Mercury with respect to the ecliptic plane. It splits ° 00 00 0 200 200 %00
up in a periodic term with a perio#l = 1066 yrs and a secular 12;’2
onell = 278 898 yrsY¥ is the second proper frequency of the = 000
Mercury’s spin-orbit coupling. It can be analytically approxi- £ 500
mated by the following formula (used in the Earth’s case by =~ -1000
Goldstein 1981): -15.00

> — 200 0 560 l(;OO 1éOO 2(;00 25‘0() 3000
272-/ (:_gn_C;A COSH]. (12) t (years)
2w, C

Fig. 5. Mercury’s spin-orbit secular resonance. The top panel presents
p_e evolution ofy andQ both including a secular term. The bottom

This analytical expression is suitable for an axis symmé .
y P y anel presents the behavioréof y — Q plotted over 3000 yrs. Let us

ric body. It is not the case of Mercury. However, assumiri¢

: . . . derline that thig angle does not present any secular term, showing
Mercury as a symmetric top rotating about its Sm_a”eit SX'S fien a synchronism between both angleandQ. On the top pannel
inertia, with an average equatorial moment of ineAi& ==,  gegrees are on the vertical axis while arcminutes are on the bottom
one finds for this period 1300 yrs (by using the values givganel; years are on both horizontal axes.

in Table 2). The dference between the two values permits to
appreciate the departure of Mercury from a symmetric body.
In the other hand, the dynamical behaviorygotoming from case, it is not a periodic synchronism as it is the case for the
SONYR is due to the directfiect of the solar torque by theMoon. Using SONYR, we make easily in evidence the periodic
way of the true dynamical figure of Mercury. In the 2-bod{8.6 yr synchronism in the lunar spin-orbit resonance while
problem, Sun-Mercury¥ = 1066 yrs andI = 0 yrs. Related it is about a secular behavior in the Hermean spin-orbit reso-
to the planetary interaction§] = 278898 yrs expresses thenance. The 3:2 resonance of Mercury introduces a mechanism
departure from the 2-body problem. of spin-orbit secular resonancgualitatively analogous to the
The dynamical behaviors gfandQ (the ascending node of orbital secular resonances combined with mean motion reso-
the orbit) are quite superimposed as shown in Fig. 5 (top panefinces (as for instance in the 2:1 case, see Bois et al. 2003). As
As it is mentioned by Bletski (1986), a second synchronism i#t is shown in Fig. 5 (bottom panel), the spin-orbit secular reso-
generally involved in a Cassini state. However, in the Mercurysnce variablé = y—Q does not present any secularterm. As a
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48.368696 cross line case (except for Pluto). We show that Venus is the
48.368694 1 planet which induces the greatest secular term. After Venus,
§ 48.368692 | R the role of Jupiter is dominant, and this 4-body problem (Sun,
2 48.368690 - - | Mercury, Venus, and Jupiter) defines our “standard” case used
= 58.646 days in our Sect. 4.3 for the analysis of the Hermean librations. The
48.368688 - o . ; .
rate of secular variations in the Mercury’s rotation between all
48.368686 0 2‘00 4‘00 6‘00 8‘00 1000 planetary interactions (cross lines) and our standard case (dots
lines) is 118 agcy (as: arcseconds) in the nutation angle
7.006815 and 19 amincy (amin: arcminutes) in thg precession angle.
7006814 | These values should be used as corrective terms in analytical
@ 17595 days theories of the rotational motion of Mercury. Let us emphasize
T 7.006813 8 that the spin-orbit motion of Mercury coming from our stan-
@ dard case is dficient for preserving the 3:2 resonance ratio
7.006812 1 .
between the two modes of motion.
7.006811 ‘ ‘ : : Starting with the initial conditions defined in Sect. 3.4
08 200400 600N 600 1000 (where in particular the initial obliquity of Mercury is equal to
299.10 zero), the SONYR model permits obtaining the dynamical be-
havior of the Hermean obliquity by its simultaneous spin-orbit
@ 299.00 1 integration. The variabldsg, Q, ¢ from SONYR substituted in
S - the following relation:
o 298.90 87.969 days
€OSy = COSi cosH + sini sind cosQ — ¢) (13)
298.80 0 260 460 660 860 1000 produce the instantaneous obliquifyplotted over 3000 yrs
t (days) as presented in Fig. 8. Such a behavior fogives easily

a mean obliquitypo = 1.6 amin. We show at present that
Fig. 6. The rotational motion of Mercury expressed in the ecliptic rethis mean value is quite consistent with the Cassini state of
erence frameOXY Zby using the 3-1-3 Eulerian sequenged,¢), Mercury. Let be the following equation established by Peale

and plotted over 1000 days. Degrees are on the vertical axes and ({e_il_g%s) and reformulated by Wu et al. (1997) and coming from
on the horizontal axis. The periods of 58.646 and 87.969 days in th?he Cassini laws:

and ¢ angles respectively, express precisely the 3:2 spin-orbit reso- )
nance rate. The peridd = 17595 days appears clearly in these pIots.MR2 _H sin (i + 70) (14)
C  nsinn[(1 + cosio) G201C22 — €0S170G210C20]

consequence; andQ on average precess at the same rate eql4}erex is the precessional angular velocity of the Hermean
to I1, confirming then the mechanism of spin-orbit secular re@tPit, namely Z/I1 yrs™, while

onance. We find that librates with the particular frequency of 7 123 -2
1066 yrs. “ P q Y 201= 5€- Ee‘? and Gpio= (1 - ez) Z

In addition, in order to give a detailed inspection of thgre eccentricity functions defined by Kaula (1966% the in-
short periods involved in the rotational motion of Mercuryination of the orbital plane of Mercury relative to a reference
Fig. 6 presents the solution plotted over 1000 days. Phe system precessing with the orbit. This inclination varies be-
rotation period of 58.646 days appears in hend 6 an- tyeen from 5 to 10° while the eccentricity varies from 0.11
gles. Whereas the mean rotation of 58.646 days is removeqdm 24, over 10 yrs (Peale 1988). As a consequenggpb-
they angle (as in Fig. 4), the signature of tRgorbital period - tained with (14) belongs to [1.33, 2.65] amin. Let us note that a
of 87.969 days is clearly visible (this angle is called libratiogonyentional value of 7 amin is often given in literature. Such a
in longitude of 88 days in literature). A third period appears ia|ye, outside the interval of possible values, is very probably
they and6 angles, namely 175.95 days. This one results frogcorrect as already claimed by Wu et al. (1997).
the 3:2 spin-orbit resonance & 2P, = 3P,).

Figure 7 presents the planetary interactions acting on the o ) o
rotational motion of Mercury by the way of its spin-orbit cou#-2- Principal figure librations
plings (i.e. indirect &ects of the planets on the Mercury’s o1 Signature of the C/MR?
tation). In the black line case the problem is reduced to the Sun
and Mercury. In this 2-body problem, the orbital plane does
not precess as it is clear in tigeand 6 angles without sec- Let us consider at present the disturbing torques acting on the
ular terms. The secular variations rise up from the departurgational motion of Mercury and as a consequence inducing
of the 2-body problem (as it is visible with the broken, dotglirect librations. This section focuses on the librations related
and cross line cases in Fig. 7). In the broken line case, the othe dynamical figure of the planet. Such librations are called
teractions between the Sun, Mercury and Venus are taken iptmcipal figure librations(Bois 1995). We assume the Sun re-
account. With the dots line, the later case includes Jupiterdaced to a point mass while the gravity field of Mercury is ex-
addition. The whole planetary interactions are integrated in thanded in spherical harmonics up to the degree 2. We express

coefficient
on the rotational motion of Mercury
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Fig. 7. Interactions of the planets on the Hermean rotational motion by the way of the spin-orbit couplings over 3000 yrs. Degrees are on the
vertical axes and years on the horizontal axis for the three panels. In the black line case, the problem is reduced to the Sun and Mercury. In
the broken line case, the interactions between the Sun, Mercury and Venus are taken into account. With the dots line the later case includes
Jupiter in addition. The whole planetary interactions are integrated in the cross line case (except for Pluto). The dots line case defines our called
standard case flicient for preserving the 3:2 resonance ratio.

35 T

—~ o~ . principal axis of inertia). For an homogeneous planet, such

2l ] a normalized value is equal to 0.4. We use a nominal value
Y of 0.34 (Table 2) used by Milani et al. (2001) and coming from
25t/ / I an internal structure model of Mercury including three layers

(crust, mantle and core).
Figure 9 presents the rotational behavior of Mercury com-
puted over 10000 yrs in our standard case with twibedi
j ! L ent values of its greatest principal moment of inertia: (i) the
1 ] computation withC/MR? = 0.4 is plotted with the dashed lines
(homogeneous planet); (ii) the broad lines are obtained with
05 1/ ] C/MR?=0.34 (three layer model of Mercury). On the bottom
ol ‘ ‘ Y ‘ panel (p angle), the dashed lines are shifted away 1 degree in
0 500 1000 1500 2000 2500 3000 order to distinguish them from the broad lines. Figure 9 (espe-
tlyears) cially thed angle) shows how th€/MR? coeficient value and
Fig.8. Dynamical behavior of the; instantaneous obliquity of the constant of precessi#h(2nd proper frequency) are related.
Mercury plotted over 3000 yrs. Arcminutes are on the vertical axd/ith C/MR? =0.4,%¥ = 125401 yrs while withC/MR? = 0.34,
and years on the horizontal axis. Over this time of integration, the BE-= 1066 yrs. Besides;/MR? and® (1st proper frequency)
havior is simply described by a period of 1066 yrs and 3.2 amin gfe also linked and for evaluating this relation, Fig. 10 shows
amplitude. Thej, mean obliquity is 1.6 amin. the variationsA¢ obtained by dferentiation: (i) on the top
panelAC = 1%, (ii) on the middle paneAC = 2%, (iii) on

the solar torque acting on the figure of Mercury according Be bottom_paneAC = 15% (034 + 15%(.034). = 04). The
Eq. (11). eats are signatures related to the variatiors.in

n (amin)

5 No=1.6amin

The first codficients of the Hermean gravity field have
been determined with the Mariner 10 probe (Anderson et a2 2. Signature of the C/MR? coefficient
1987). We use these values @ = -Jp and Cz, given on the obliquity and on the libration angle
in Table 2. In order to complete the Hermean tensor of iner- in longitude
tia (coeficientsA, B,C), the C/MR? principal moment of in-
ertia is required (see Eq. (11)). Its value is related to the i®ne of the main objectives of the BepiColombo and
ternal density distribution of the planet according to the polMESSENGER missions is to measure the rotation state of
axis of Mercury (rotation of greatest energy about the smallédercury, up to an accuracy allowing to constrain the size and
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Fig. 9. Rotational behavior of Mercury for two fierent values of its Fig- 10. The signature of the libration of Mercury when the principal

greatest principal moment of inertia. Degrees are on the vertical agé@ment of inertia along the axis of figure varies from 1% in the top

and years on the horizontal axes. The computation @jtiR2 =0.4 Panela), to 2% in the mean panel and 15% in the bottom pamel

is plotted through the dashed lines; this value corresponds to an R¢grees are on the vertical axes and years on the horizontal axes.

mogeneous planet. The broad lines are obtained @jtR? = 0.34;

this value derives from an internal structure model of Mercury in-

cluding three layers. On the bottom panelangle), the dashed lines differentiation the signature of the 1% variatiorGMR? on1,.

are shifted away 1 degree in order to distinguish them from tfithe maximal amplitude crest to crest is of the order of 2.3 mas

broad lines. within the characteristic period of 175.95 days related to the
3:2 ratio of the Mercury’s spin-orbit resonance.

physical state of the planet’s core (Milani et al. 2001; Solomon Figure 12 presents the signature of BAVR® codficient
et al. 2001). Consequently, the two missions have to determpie they libration angle in longitude. The top panel expresses
the four following parameter€so, Cp2, 7, andy that are suf- the behavior ofp computed over 500 days with/MR® = 0.34
ficient to determine the size and state of the Mercury’s cofdlack lines) andC/MR? =0.3434 (dashed lines). One may
(see Peale 1988, 1997). CombiniBgy, Cy,, andn, one ob- compare this Fig. 12 to Fig. 3 resulting from the usual analyt-
tains theC/MRZ codficient while withC,, andso, one obtains ical resolution of the Eulerian Eq (4) (thankS to G. Giampieri,
Cm/MR2 (i.e. theC/MR2 codficient for the mantle). The va- Private communication). Let us note that the angtiefined in
lidity condition of the first combination is that the dynamicalig. 3 is equal to the angle plotted in Fig. 12. The later only
behavior of the core has to follow the one of the mantle ovegées a simple double sine curve with an amplitude of 42 as
period of time at least the one ©if (assertion 1) The Va||d|ty while the solution of the SONYR model includes the COUplingS
condition of the second combination is that the dynamical peetween the three rotational variables as well as the indirect
havior of the core has not to be coupled to the one of the marftUplings due to planetary interactions (we notice that in the
over a period of 88 daygD(/l) (assertion 2) These two Condi_tWO FlgS 12 and 3 the amplitude of libration is of the order of
tions linked together imply some constraints on the nature $§ as). Let us note that Fig. 12 corresponds to the libration re-
the core-mantle interface (Peale 1997). In order to reach siigd to theC/MR? codficient of the planet without core-mantle
an objective, the BepiColombo mission has to obtain a value 8aUPlings. Let us add that in Peale (1972), the amplitude of
the C/MR? codficient with an accuracy of 0.003, i.e. 1% andp related to th&€, codficient by assuming that the assertion 2
therefore foresees measuring the libration angle and the obfigoted upper is true. On the contrary, our first results on this
uity with an accuracy of 3.2 and 3.7 as respectively (Mila#PPic make in evidence the existence of a faint coupling. This
etal. 2001). core-mantle coupling will be presented in a forthcoming pa-
Our SONYR model gives (i) the true relation between tHeer. The bottom panel of Fig. 12 shows byfefentiation the
three parameterf«MRz, n, ‘p), and (||) the upper bounds OfSignatUre of the 1% variation (ﬁ/MRZ on ¢. The maximal
the impact ofC,,/MR2 on they angle. Figure 11 presents theémMplitude within the period of about 88 days (i.e. the signature
impact of theC/MR2 codficient on the instantaneous obligof P.) is of the order of 615 as.
uity 5. In these plots (Figs. 11 and 12), the spin-orbit mo- In conclusion, signatures of the indeterminacy of 1%
tion of Mercury is integrated within the whole solar sysin C/MR? on the obliquity and on the libration in longitude are
tem with an initial obliquity of 1.6 amin, which is the mear?-3 mas and 0.45 as respectively. What is very faint (may be
obliquity of Mercury evaluated in Sect. 4.1. The top panel @0 much) with respect to the expected accuracy forecasted in
Fig. 11 expresses the dynamical evolutiomafomputed over the BepiColombo mission.
500 days withC/MR? = 0.34 (black lines) an@/MR? = 0.3434
(dashed lines). Dashed lines are shifted from 0.001 amin in o)
der to distinguish the two fferent kinds of lines. Figure 11
shows also how the instantaneous obliquity of Mercuffeds Because the initial obliquity value is unknown, we test in this
from its 16 amin nominal value. The bottom panel shows biast section the impact of the indeterminacy of this value on

3. Varying the obliquity
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Fig. 11. Signature of the€/MR? coefficient on the obliquity of Mercury for two éfierent values shifted from 1%. Arcminutes are on the vertical

axis of the top panel while milliarcseconds are on the vertical axis of the bottom panel; days are on the horizontal axis for both panels. The
maximal amplitude of the signature 6fMR? on the obliquity is 2.3 mas. On the top panel, the dashed lines are shifted away 0.001 amin in
order to distinguish them from the broad lines.
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B 22:;2 I ‘ ‘ ‘ ‘ P The spin-orbit motion of Mercury is characterized by two
S 2865 e : proper frequencies (namety = 15847 and¥ = 1066 yrs)
@ iggg Fl T T 1 1 1 and its 3:2 resonance presents a second synchronism which
o 500 1000 1500 2000 2500 3000 can be understood asspin-orbit secular resonancéll =

2870 T T T T T 278898 yrs). A new determination of the mean obliquity has
B st | been proposed in the paper. By using the SONYR model, we
z have found a mean obliquity of 1.6 amin. This value is consis-

28.60 - B
2855 1 1 1 1 1 tent with the Cassini state of Mercury. Besides, we have identi-

0 500 ~ 1000 1500 2000 2500 3000 fied in the Hermean librations the impact of the uncertainty of

the greatest principal moment of inert@/(VR?) on the oblig-

e uity and on the libration in longitude (2.3 mas and 0.45 as re-

A spectively for an increase of 1% on tAgMR? value). These

500 1000 1500 2000 2500 3000 determinations prove to be suitable for providing constraints
t(vears) on the internal structure of Mercury. The direct core-mantle in-

teractions will be presented in a forthcoming paper.

n (amin)
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Fig. 13. Impact of the initial obliquity on the nutation angie
(top panel), on the orbital inclinatian(middie panel), and on the in- AcknowledgementsThe authors thank A. Pavlov for his help in the

stantaneous obliquity (bottom panel). Degrees are on the verticabgincag cross-section computations and J. Brillet for providing his ef-

axes of the top and middle panels while arcminutes are on the Vefiiient method of mean last squares useful for accurate determinations
cal axis of the bottom panel; years are on all horizontal axes. On e"i‘)(f'rberiods in our data files.

panel, three curves plotted over 3000 yrs correspond to thfiesedit
initial values ofy: 0 amin (black lines), 1 amin (dashed lines), and ) .
2 amin (dot lines). Appendix A: Free rotation

Let us assumed Mercury isolated in space; in this sense, its
the spin-orbit motion of Mercury. The results are presented igtation is free and the Euler-Liouville equations for its rota-
Fig. 13 plotted over 3000 yrs; top panel: thiéeet on the nuta- tion are written without right hand side, i.e. without any ex-
tion angley, middle panel: theféect on the orbital inclination  ternal disturbing torques. If we add the assumption of a rigid
and bottom panel: theffect on the instantaneous obliquity Mercury, we are in the Euler-Poinsot motion case (whose solu-
On each panel, three curves are related to thrierdnt initial  tjons are the well-known Eulerian oscillations). Without explic-
values ofy, namely 0 amin (black lines), 1 amin (dashed linesjy integrating such equations, the assurance of integrability in
and 2 amin (dot lines). In the bottom panel, the amplitudes gfe Poincae’sense can be obtained by some theoretical simple
these librations are of the order of 1.4 amin with a period @bnsiderations. Indeed, whatever being the triplet of general-
1066 yrs. For any initial value of € [0, 3.2] amin, the mean jzed coordinates used to describe the spatial attitude of a solid
value ofn, let beno, is equal to 1.6 amin, which is in goodhody in a fixed frame, one knows that there exists four indepen-
agreement with the determination s in a previous section. dantintegrals of motion: the Hamiltonih and the three com-
We may claim thatjo = 1.6 amin. ponentd_x, Ly, Lz of the angular momentum (i@XY 2. Four

For obtaining such a mean obliquity by measurements, |gtegrals of motion for three degrees of freedom, the problem
us underline that the theoretical behaviomgsoints out to fit s then integrable and even over-integrable. One does not lose
the observations by a sine function taking into account the lofik generality of the problem choosing for instaice B < C.

period¥ = 1066 yrs with an amplitude of 1.6 amin. The choiceA < B < C makes possible to write the general so-
lution of the system under a form involving the elliptical func-
5. conclusion tions of Jacobi (Landau & Lifchitz 1969). By convention, let

us adopt that the resulting oscillations in space be called the

The 3:2 spin-orbit resonance between the rotational and orbiigfierian oscillationsexpressing exclusively the oscillations of

motions of Mercury results from a functional dependance g{e non-perturbed rotation of the rigid body. From this resolu-
the tidal friction adding to a non-zero eccentricity and a pefjpn we obtain the Eulerian frequencies:

manent asymmetry in the equatorial plane of the planet. The
upcoming space missions, MESSENGER and BepiColombo L2 — 2AH

with onboard instrumentation capable of measuring the rofdt = 7(:((: A (A1)
tional parameters stimulate the objective to reach an accurate
theory of the rotational motion of Mercury. and

Starting from our BJV relativistic model of solar system g - o, \/a_,B (A.2)

tegration including the coupled spin-orbit motion of the Moon,

we have obtained a model generalizing the spin-orbit couplirigt give for Mercury the two period3; ando (whereL is the
to the terrestrial planets (Mercury, Venus, Earth, and Margjagular momentum i®XYZ H the energy)a andg are the
The updated model is called SONYR (acronym of Spin-Ortdlynamical cofficients of the body related t8, B andC by
N-BodY Relativistic model). It permits to analyze and identhe following relations:

tify the different families of rotational librations. Thisworkhas ¢ _ g C_A

been carried out for Mercury in the present paper. = and g = B (A.3)
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