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Abstract. The 3:2 spin-orbit resonance between the rotational and orbital motions of Mercury (the periods arePφ = 56.646 and
Pλ = 87.969 days respectively) results from a functional dependance of the tidal friction adding to a non-zero eccentricity and
a permanent asymmetry in the equatorial plane of the planet. The upcoming space missions, MESSENGER and BepiColombo
with onboard instrumentation capable of measuring the rotational parameters stimulate the objective to reach an accurate theory
of the rotational motion of Mercury. For obtaining the real motion of Mercury, we have used our BJV model of solar system
integration including the coupled spin-orbit motion of the Moon. This model, expanded in a relativistic framework, had been
previously built in accordance with the requirements of the Lunar Laser Ranging observational accuracy. We have extended
the BJV model by generalizing the spin-orbit couplings to the terrestrial planets (Mercury, Venus, Earth, and Mars). The
updated model is called SONYR (acronym of Spin-OrbitN-BodY Relativistic model). As a consequence, the SONYR model
gives an accurate simultaneous integration of the spin-orbit motion of Mercury. It permits one to analyze the different families
of rotational librations and identify their causes such as planetary interactions or the parameters involved in the dynamical
figure of the planet. The spin-orbit motion of Mercury is characterized by two proper frequencies (namelyΦ = 15.847 yrs
andΨ = 1066 yrs) and its 3:2 resonance presents a second synchronism which can be understood as aspin-orbit secular
resonance(Π = 278 898 yrs). A new determination of the mean obliquity is proposed in the paper. By using the SONYR
model, we find a mean obliquity of 1.6 arcmin. This value is consistent with the Cassini state of Mercury. Besides, we identify
in the Hermean librations the impact of the uncertainty of the greatest principal moment of inertia (C/MR2) on the obliquity
and on the libration in longitude (2.3 milliarcsec and 0.45 arcsec respectively for an increase of 1% on theC/MR2 value). These
determinations prove to be suitable for providing constraints on the internal structure of Mercury.
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1. Introduction

Before 1965, the rotational motion of Mercury was assumed
to be synchronous with its orbital motion. In 1965, Pettengill
& Dyce discovered a 3:2 spin-orbit resonance state by using
Earth-based radar observations (the Mercury’s rotation period
is Pφ = 58.646 days while the orbital one isPλ = 87.969 days).
This surprising resonance results from a non-zero eccentric-
ity and a permanent asymmetry in the equatorial plane of the
planet. In addition, the 3:2 resonance strongly depends on the
functional dependance of the tidal torque on the rate of the li-
bration in longitude. Moreover the 3:2 resonance state is pre-
served by the tidal torque (Colombo & Shapiro 1966). The
main dynamical features of Mercury have been established dur-
ing the 1960s in some pioneer works such as Colombo (1965),
Colombo & Shapiro (1966), Goldreich & Peale (1966) and
Peale (1969). Goldreich & Peale (1966) notably studied the
probability of resonance capture and showed that the 3:2 ra-
tio is the only possible one for a significant probability of cap-
ture. In addition, in a tidally evolved system, the spin pole is
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expected to be trapped in a Cassini state (Colombo 1966; Peale
1969, 1973). The orbital and rotational parameters are indeed
matched in such a way that the spin pole, the orbit pole, and
the solar system invariable pole remain coplanar while the spin
and orbital poles precess. The reader may find in Balogh &
Campieri (2002) a review report on the present knowledge of
Mercury whose the interest is nowadays renewed by two up-
coming missions: MESSENGER (NASA, Solomon et al. 2001)
and BepiColombo (ESA, ISAS, Anselin & Scoon 2001).

Our work deals with the physical and dynamical causes
that contribute to induce librations around an equilibrium state
defined by a Cassini state. In order to wholly analyze the
spin-orbit motion of Mercury and its rotational librations, we
used a gravitational model of the solar system including the
Moon’s spin-orbit motion. The framework of the model has
been previously constructed by Bois, Journet & Vokrouhlick´y
(BJV model) in accordance with the requirements of Lunar
Laser Ranging (LLR thereafter) observational accuracy (see
for instance a review report by Bois 2000). The approach of
the model consists in integrating theN-body problem on the
basis of the gravitation description given by the Einstein’s gen-
eral relativity theory according to a formalism derived from the
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first post-Newtonian approximation level. The model is solved
by modular numerical integration and controlled in function of
the different physical contributions and parameters taken into
account. We have extended this model to the integration of the
rotational motions of the terrestrial planets (Mercury, Venus,
Earth, and Mars) including their spin-orbit couplings. The up-
dated model is then called SONYR (acronym of Spin-OrbitN-
bodY Relativistic model). As a consequence, using SONYR,
the N-body problem for the solar system and the spin mo-
tion of Mercury are simultaneously integrated. Consequently
we may analyze and identify the different families of Hermean
rotational librations with the choice of the contributions at our
disposal.

Starting with the basic spin-orbit problem according to
Goldreich & Peale (1966), we have computed a surface of
section for the Mercury’s rotation showing its very regular
behavior. We have calculated again the proper frequency for
the spin-orbit resonance state of Mercury. Using our model, an
important part of the present study deals with the main per-
turbations acting on the spin-orbit motion of Mercury such as
the gravitational figure of the planet as well as the planetary
effects and their hierarchy. A detailed analysis of the result-
ing rotational librations due to these effects is presented and
described in the paper. A new determination of the Hermean
mean obliquity is also proposed. Moreover, we identify in the
Hermean librations the impact of the variation of the greatest
principal moment of inertia on the instantaneous obliquity and
on the libration in longitude. Such a signature gives noticeable
constraints on the internal structure of Mercury.

2. Geometry of the spin-orbit coupling problem

According to Goldreich & Peale (1966), we consider the spin-
orbit motion of Mercury with its spin axis normal to the orbital
plane. The orbit is assumed to be fixed and unvariable (semi-
major axisa and its eccentricitye). The position of Mercury
is determined by its instantaneous radiusr while its rotational
orientation is specified by the angleθ. The orbital longitude is
specified by the true anomalyf while the angleθ − f mea-
sures the angle between the axis of least moment of inertia of
Mercury and the Sun-to-Mercury line (see Fig. 1). According
to these assumptions, the dynamical problem of the spin-orbit
motion of Mercury is reduced to a one-dimensional pendulum-
like equation as follows:

Cθ̈ +
3
2

(B− A)
GM�

r3
sin 2(θ − f ) = 0 (1)

where G is the gravitational constant,M� the solar mass,
andA, B, andC the principal moments of inertia of Mercury.
This equation of motion has only a single degree of freedom
for the spin-orbit coupling, the characteristic angle of rota-
tion θ, but depends explicitly on time through the distancer
to the planet and the non-uniform Keplerian motion of the true
anomalyf . As a consequence, it is a problem not reducible by
quadrature and Eq. (1) is non-integrable (Wisdom 1987).

In order to know the structure of the phase space of the
Mercury’s rotation, a surface of section for its spin-orbit cou-

pling is very useful. Let beα =
√

3(B−A)
C the asphericity of the

PeriapseApoapse Sun

fθ

r

Planet θ-f

Fig. 1. Geometry of the spin-orbit coupling problem.r is the radius
vector, f the true anomaly andθ is the characteristic angle of rotation.

Mercury’s dynamical figure combining the principal moments
of inertiaA, B, andC. Equation (1) becomes:

θ̈ +
1
2

n2
(a
r

)3
α2 sin 2(θ − f ) = 0 (2)

wheren is the orbital mean motion,f andθ as defined above.
The numerical integration of Eq. (2) yields to Fig. 2 show-
ing stroboscopically, i.e. once point per orbit at the periapse,
various trajectories of the phase portrait of Mercury (θ and
1/ndθ/dt on the axesx andy respectively). Figure 2a illustrates
the different quasiperiodic librations around the 1:2, 1:1 (syn-
chronous), 3:2, and 2:1 rotation states while Fig. 2b shows a
zoom of the present 3:2 resonance state for Mercury. Let us
notice that in the 1:2 rotation state, the two libration areas are
shifted byπ/2 with respect to the other rotation states. The for-
mer rotation rate of Mercury was higher and the planet could
have experienced large and chaotic variations in obliquity at
some time of the past (Laskar & Robutel 1993). Due to its
slowing down by tidal despin, the Mercury’s rotation has then
encountered different resonance states, from higher orders to
the one trapped in the present state. Goldreich & Peale (1966)
have shown that this present state (the 3:2 resonance) was the
first one with a substantial probability of capture. This one in-
deed depends crucially on the functional dependence of the
tidal torque acting on the spin-orbit motion. This dependence
is expressed by the variation rate of the longitude libration an-
gleγ as defined below. In the end, the stabilization of Mercury
at the 3:2 spin-orbit resonance is due to permanent asymme-
try on the equatorial plane, as well as its non-zero eccentricity
equal to 0.206 (Colombo 1966; Colombo & Shapiro 1966).

According to the Chirikov resonance overlap criterion
(1979), the chaotic behavior appears when the asphericity of
the body is larger than the following critical value:

αcr =
1

2+
√

14e
(3)

where e is the orbital eccentricity. In the case of Mercury,
α = 0.0187 is lower than the critical valueαcr = 0.2701. As
a consequence, the spin-orbit behavior is regular. The zoom in
Fig. 2b shows indeed that the separatrix surrounding the 3:2
resonance state is very small. The width of the associated
chaotic zone is then estimated to the order of 10−43 (Wisdom
et al. 1984). Consequently, tidal friction pulls Mercury accross
the chaotic separatrix in a single libration period.

From Eq. (1), it is possible to obtain an integrable ap-
proximated equation using the spin-orbit resonance, the spin
rate θ̇ being commensurable with the mean orbital motionn.
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Fig. 2. Surface of section of the Mercury’s spin-orbit coupling (α = 0.0187, e = 0.206). The rate of change of the orientation is plotted versus
the orientation of Mercury defined by the angleθ at every pericenter passage. The spin axis is constrained to be normal to the orbital plane. The
plot a) makes in evidence the different quasiperiodic librations around the 1:2, 1:1 (synchronous), 3:2, and 2:1 rotation states. The plotb) is a
zoom of the real 3:2 resonance state of Mercury. The chaotic zone is microscopic and non visible at this scale.

Following Murray & Dermott (2000), by introducing a new
variableγ = θ − pn wherep parametrizes the resonance ratio
(p = 3

2 in the case of Mercury), one may expand the equation
in form-like Poisson series. Taking into account that ˙γ � n,
one averages all the terms over one orbital period, and finally
obtain the following equation:

γ̈ +
3
2

n2 B− A
C

H(p, e) sin2γ = 0 (4)

whereH(p, e) is a power series in eccentricity. In the case of
Mercury, this expression is written as follows:

H

(
3
2
, e

)
=

7
2

e− 123
16

e3. (5)

Finally, the proper frequency of the Mercury’s spin-orbit mo-
tion is:

ω0 = n
[
3

B− A
C
|H(p, e)|

] 1
2

(6)

which by using the values listed in Table 2 gives the proper
period of 15.830 yrs.

Balogh & Giamperi (2002) developed Eq. (2) and obtained
the following expression:

γ̈ + α0

∑
q

G20q(e) sin
[
2γ + (1− q)M

]
= 0 (7)

where theG20q coefficients are eccentricity functions defined
by Kaula (1966). TheG201 coefficient is equal toH( 3

2 , e).
α0 =

3
2

B−A
C = 1.76 × 10−4 for the Mercury case. Figure 3

presents then the numerical solution of the formula (7) (thanks
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Fig. 3. The spin-orbit solution of Mercury in the planar case (Eq. (7))
plotted over 250 days. Arcseconds are on the vertical axis and days on
the horizontal axis. Short-term librations have a period of 87.969 days
(the orbital period of Mercury) and 42 as of amplitude.

to Giampieri, private communication). The angleγ describes
a periodic behavior with a period equal to the revolution of
Mercury. The amplitude of 42 arcsec (as) depends on the value
of α0. The behavior of theγ angle is nicely matched by the
approximate formula of Jhen & Corral (2003):

γ = φ0 sinM + φ1 sin 2M (8)

whereφ0 = α0(G200 − G202) andφ1 =
α0
4 (G20−1 − G203). The

authors noticed that the ratio of the two amplitudes (φ0 andφ1)
does not depend on theα0 parameter, andK = φ0

φ1
= −9.483.
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However, the above equations describe a spin-orbit motion
of Mercury where the spin axis is normal to the orbital plane
while the orbital motion is Keplerian.

3. The extended BJV model: SONYR

3.1. Theory

In order to wholly analyze the spin-orbit motion of Mercury
and its rotational librations, we have enlarged a gravitational
model (called BJV) of the solar system including the Moon’s
spin-orbit motion. The accurate theory of the Moon’s spin-orbit
motion, related to this BJV model, was constructed by Bois,
Journet & Vokrouhlick´y in accordance with the high accuracy
of the LLR observations (see previous papers: Bois et al. 1992;
Bois & Journet 1993; Bois & Vokrouhlick´y 1995; Bois et al.
1996; Bois & Girard 1999). The approach of the BJV model
consists in integrating theN-body problem (including transla-
tional and rotational motions) on the basis of the gravitation de-
scription given by the Einstein’s general relativity theory. The
equations have been developped in the DSX formalism pre-
sented in a series of papers by Damour et al. (Damour et al.
1991, 1992, 1993, 1994). For purposes of celestial mechan-
ics, to our knowledge, it is the most suitable formulation of the
post-Newtonian (PN) theory of motion for a system ofN arbi-
trary extended, weakly self-graviting, rotating and deformable
bodies in mutual interactions. The DSX formalism, derived
from the first post-Newtonian approximation level, gives the
post-Newtonian representation of the translational motions of
the bodies as well as their rotational ones with respect to the
locally transported frames with the bodies.

Gravitational fields of the extended bodies are parameter-
ized in multipole moment expansions: (MA

L ,S
A
L ) define the

mass and spin Blanchet-Damour multipoles characterizing the
PN gravitational field of the extended bodies while (GA

L ,H
A
L )

are tidal gravitoelectric and gravitomagnetic PN fields. Because
we do not dispose of dynamical equations for the quadrupole
momentsMA

ab, and although the notion of rigidity faces con-
ceptual problems in the theory of relativity, we have adopted
the “rigid-multipole” model of the extended bodies as known
from the Newtonian approach. Practically this is acceptable
since the relativistic quadrupole contributions are very small.
Consequently and because it is conventional in geodynamical
research to use spherical harmonics analysis of the gravita-
tional fields with the corresponding notion of harmonic coef-
ficients (CA

lm,S
A
lm), the quadrupole momentsMA

ab have been ex-
pressed in those terms, according to reasons and assumptions
given in Bois & Vokrouhlický (1995). Gravitational figures as
well as the figure-figure interactions of the bodies are then
represented by expansions in spherical harmonics (Borderies
1978; Shutz 1981). Moreover, internal structures of solid de-
formable bodies, homogeneous or with core-mantle interfaces,
are represented by several terms and parameters arising from
tidal deformations of the bodies (both elastic and anelastic).
More details and references on these topics are given in the
above quoted papers related to our works concerning the the-
ory of the Moon’s spin-orbit motion.

The BJV model, as described above, has been extended to
the spin-orbit integration of the terrestrial planets (Mercury,
Venus, Earth, and Mars). This new model is henceforth called
SONYR (for Spin-OrbitN-bodY Relativistic model). In the
present paper framework, the SONYR model is devoted to the
detailed analysis of the complete spin-orbit motion of Mercury.

The simultaneous integration of the solar system, includ-
ing the Mercury’s spin-orbit motion, uses a global reference
system given by the solar system barycenter. Nevertheless,
let us recall that local dynamically non-rotating frames show
a slow (de Sitter) rotation with respect to the kinematically
non-rotating frames. As a consequence, the reference frame
for the Mercury’s rotation is affected by a slow precession of
its axes transported with the translational motion of Mercury.
In the Earth’s case, the de Sitter secular precession of the
Earth reference frame is close to 1.92 as/cy (see Fukushima
1991; Bizouard et al. 1992; Bois & Vokrouhlick´y 1995).
Consequently, the real rotation of Mercury has not to be ex-
pressed in an inertial system fixed in space, but in a local dy-
namically non-rotating frame fallen down in the gravitational
field of the Sun. Because of the proximity of Mercury to the
Sun, its de Sitter precession may be expected quite significant.

In the end, the SONYR model and its analysis method take
into account (i) the experience in post-Newtonian gravitation
in the definition of reference frames required to deal with rota-
tional motions combined with translational ones, and (ii) the
modern knowledge of dynamical systems for studiing libra-
tions as quasi-periodic solutions according to the axiomatic
presented in Bois (1995). We can state that the model is not
Newtonian but rather “Newtonian-like”, resulting from trun-
cation of the fully post-Newtonian (DSX) framework. In the
present paper, we deal with the Newtonian-like librations (clas-
sical physical librations), while the formally relativistic contri-
butions (relativistic librations and de Sitter precession of the
Mercury’s reference frame) will be analyzed in a forthcom-
ing paper.

3.2. Method

The model is solved by modular numerical integration and con-
trolled in function of the different physical contributions and
parameters taken into account. TheN-body problem (for the
translational motions), the rotational motions, the figure-figure
and tidal interactions between the required bodies are simul-
taneously integrated with the choice of the contributions and
truncations at our disposal. For instance, the upper limits of
the extended figure expansions and mutual interactions may be
chosen as follows: up tol = 5 in the Moon case, 4 for the
Earth, 2 for the Sun while only the Earth-Moon quadrupole-
octupole interaction is taken into account (see previous papers).
The model has been especially built to favor a systematic anal-
ysis of all the effects and contributions. In particular, it permits
the separation of various families of librations in the rotational
motions of the bodies.

The non-linearity features of the differential equations, the
degree of correlation of the studied effect with respect to its
neighbors (in the Fourier space) and the spin-orbit resonances
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Table 1.Our initial conditions at 07.01.1969 (equinox J2000).

Mercury

Rotation angles

ψ = 48.386 deg ψ̇ = 0.0 deg/day < ψ̇ > = –0.340 10−5 deg/day (a)

θ = 7.005 deg θ̇ = 0.0 deg/day < θ̇ > = –0.235 10−7 deg/day (a)

ϕ = 299.070 deg ˙ϕ = 6.138505 deg/day (b) η0 = 1.6 amin (a)

(a) Mean values derived from the SONYR model; (b) Seidelmann et al. (2002).

(in the Moon and Mercury’s cases), make it hardly possible
to speak about “pure” effects with their proper behavior (even
after fitting of the initial conditions). The effects are not abso-
lutely de-correlated but relatively isolated. However, the used
technique (modular and controlled numerical integration, dif-
ferentiation method, mean least-squares and frequency analy-
sis) gives the right qualitative behavior of an effect and a good
quantification for this effect relative to its neighbors. In the case
of the particular status of the purely relativistic effetcs, their
quantitative behaviors are beyond the scope of the present pa-
per and will be discussed in a forthcoming work. When a ro-
tational effect is simply periodic, a fit of the initial conditions
for a set of given parameters only refines without really chang-
ing the effect’s behavior. The amplitudes of librations plotted
in Figs. 11 and 12 are then slightly upper bounds.

The precision of the model is related to the one required
by the theory of the Moon. One of the aims in building the
BJV model (at present included inside SONYR) was to take
into account all phenomena up to the precision level resulting
from the LLR data (i.e. at least 1 cm for the Earth-Moon dis-
tance, 1 milliarcsec (mas) for the librations). For reasons of
consistency, several phenomena capable of producing effects
of at least 0.1 mas had been also modeled (the resulting libra-
tion may be at the observational accuracy level). Moreover, in
order to justify consistence of the Moon’s theory, this one had
been adjusted to the JPL ephemeris on the first 1.5 yrs up to a
level of a few centimeter residuals. In the other hand, the in-
ternal precision of the model is only limited by the numerical
accuracy of the integration. Thus, in order to avoid numerical
divergence at the level of our tests for Mercury, computations
have been performed in quadrupole precision (32 significant
figures, integration at a 10−14 internal tolerance).

3.3. Terminology

In order to de-correlate the different librations of Mercury, we
use the terminology proposed in Bois (1995), which is suit-
able for a general and comparative classification of rotational
motions of the celestial solid bodies. This terminology derives
from a necessary re-arrangement of the lunar libration families
due to both progress in the Moon’s motion observations (LLR)
and modern knowledge of dynamical systems.

Traditionally, the libration mode called physical libration is
split up according to the conventional dualism“forced-free”.
The forcedphysical librations are generally related to gravita-
tional causes while thefree librations would be departures of
the angular position from an equilibrium state. These cuttings

out contain ambiguities and redundancies discussed in previ-
ous papers (Bois 1995, 2000). Formally, the free librations are
periodic solutions of a dynamical system artificially integrable
(by a convention of writing related to specific rates of the spin-
orbit resonance, for instance 1:1), whereas the forced librations
express, in space phase, quasi-periodic solutions around a fixed
point (the system is no longer integrable). Moreover, any sta-
ble perturbed rotation of celestial solid body contains imbricate
librations of different nature, and those are too strongly over-
lapped to keep the traditional classification.

In the present terminology, the libration nature, its cause
and its designation are linked up. Two great libration fami-
lies serve to define the physical librations, namely thepoten-
tial librations and thekinetical librations. They simply corre-
spond to a variation energy, potential or kinetical respectively.
For libration sub-classes, the designation method is extensive
to any identified mechanism (see more details in Bois 1995).
The terminology permits easily the separation of various fami-
lies (see the Moon’s case described in a set of previous papers).
These librations are calleddirect when they are produced by
torques acting on the body’s rotation. They are calledindirect
when they are produced by perturbations acting on the orbital
motion of the body. Indirect librations derive from spin-orbit
couplings.

A specificity of the SONYR model with its method of anal-
ysis is to isolate the signature of a given perturbation. The
SONYR model allows indeed the identification of relation-
ships between causes and effects including interactions be-
tween physics and dynamics, such as the dynamical signature
of a core-mantle interaction (calledcentrifugal librations).

3.4. Parameters and initial conditions

In the computations presented in the paper, the required dy-
namical parameters and general initial conditions come from
the JPL DE405 ephemeris (Standish 1998). However, concern-
ing the parameters related to the Mercury’s rotation (second-
degree spherical harmonicsC20 and C22), which are not in-
cluded in the JPL ephemeris, our model uses those given by
Anderson et al. (1987) (see Table 2). Besides, up to now it does
not exist any ephemeris of the Mercury’s rotation. As a conse-
quence, to build initial conditions for the Hermean rotation (de-
scribed by an Eulerian sequence of anglesψ, θ andϕ defined
below in Sect. 4.1), we use the following principle: assuming
the polar axis of Mercury normal to its orbital plane, we obtain
ψ = Ω andθ = i whereΩ andi are respectively the ascending
node and the inclination of the orbit of Mercury on the Earth
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Table 2.Parameters of Mercury.

Mercury

Bulk quantities

Mass (GM�) = 4.9125× 10−10 (a)

Equatorial radius (km) = 2439 (b)

J2 = (6.0± 2.0)× 10−5 (b)

C22 = (1.0± 0.5)× 10−5 (b)

C/MR2 = 0.34 (c)

(a) JPL; (b) Anderson et al. (1987); (c) Milani et al. 2001.

Table 3. Our results for the spin-orbit motion of Mercury. The spin-
orbit period verifies the relation:̃P = 2Pλ = 3Pϕ.

Mercury
Spin-orbit characteristic period

Φ (1st proper frequency) = 15.847 yrs
Ψ (2nd proper frequency) = 1066 yrs
Π (orbital precession) = 278 898 yrs
Pλ (orbital period) = 87.969 days
Pϕ (rotational period) = 58.646 days
P̃ (spin-orbit period) = 175.95 days

equatorial plane (which is the reference frame used in
the DE405 ephemeris). The long axis of Mercury being pointed
towards the Sun at its periapse allows to fix theϕ angle of polar
rotation. The value of ˙ϕ is found in Seidelmann et al. (2002).
We use at lasṫψ = 0 andθ̇ = 0; these two variables reach to
mean values generated by the complete spin-orbit problem of
Mercury:−0.340× 10−5 deg/day and−0.235× 10−7 deg/day
respectively. The numerical integrations presented in the paper
start from these initial conditions related to the planar problem
for Mercury; they are listed in Table 1. Departure from the pla-
nar case is understood as the integration of physics included
in SONYR.

In the other hand, for the computations carried out in this
paper, the global reference frameO′X′Y′Z′ is given by a ref-
erence system centered on the solar system barycenter, fixed
on the ecliptic plane, and oriented at the equinoxJ2000. The
rotational motion of Mercury is evaluated from a coordinate
axis system centered on the Mercury’s center of massOxyz
relative to a local dynamically non-rotating reference frame,
OXYZ, whose axes are initially co-linear to those ofO′X′Y′Z′.
In the framework of the present paper without purely relativis-
tic contributions, let us note that axes ofOXYZremain parallel
to those ofO′X′Y′Z′.

The N-body problem for the planets of the solar system
and the Mercury’s spin-orbit motion are simultaneously inte-
grated in the SONYR model. Concerning the rotational equa-
tions written in a relativistic framework, the reader may refer to
Bois & Vokrouhlický (1995). In a Newtonian approach, these
equations amount to the classical Euler-Liouville equations of
the solid rotation (see e.g. Goldstein 1981). We follow the for-
malism and the axiomatic expanded in Bois & Journet (1993)
and Bois (1995) for the definition of the different rotational el-
ements as well as the used terminology. Let us simply precise

thatl is the angular momentum expressed inOxyzand is related
to the instantaneous rotation vectorω as follows:

l = (I )ω (9)

where(I ) is the tensor of inertia for the body. According to clas-
sical assumptions,(I ) is reduced to three principal moment of
inertiaA, B, andC. The gravity field of Mercury is essentially
unknown. The tracking data from the three fly-by of Mariner 10
in 1974–75 have been re-analyzed by Anderson et al. (1987) to
give a low accuracy estimate of the normalized coefficientsC20

andC22 (see Table 2, values are expressed in the body-fixed
frame of the principal axes of inertia). The principal moments
of inertia A and B are then infered fromC20 andC22 by the
following formulae (Ferrari et al. 1980):

A
MR2

= C20 − 2C22 +
C

MR2
(10)

B
MR2

= C20 + 2C22 +
C

MR2
·

Let us note that the parameterC/MR2 is not constrained within
these relations. We present in Sect. 4.2 the variations ofC/MR2

by analyzing its signature into the librations of Mercury.

4. The librations of Mercury

4.1. Planetary perturbations

For Mercury assumed to be a rigid body reduced to three
oblateness coefficients, the general expression for a torque
coming from a disturbing point massm at the vectorial posi-
tion ru (r is the instantaneous distance) is written as follow:

N2 =

(
3Gm
a3

) (a
r

)3
u × (I ) u (11)

wherea is the mean distance between the two bodies. Such
a torque due to the Sun is the dominant one acting on the
rotational motion of Mercury. The solar torque is indeed re-
sponsible of the global dynamical behavior of the rotation of
Mercury. Due to Venus, the resulting torque is about of the or-
der of 105 times smaller, that is quite negligible.

Figure 4 presents the rotational motion of Mercury includ-
ing only the solar torque in the rotational equations and taking
into account simultaneously the wholeN-body problem for the
Sun and the planets (the planetary interactions inducing indi-
rect effects on the rotation of Mercury). In this figure, the Euler
anglesψ, θ, ϕ related to the 3-1-3 angular sequence describe
the evolution of the body-fixed axesOxyz with respect to the
axes of the local reference frameOXYZ. Let us recall the def-
inition used for these angles:ψ is the precession angle of the
polar axisOz around the reference axisOZ, θ is the nutation
angle representing the inclination ofOz with respect toOZ,
andϕ is the rotation aroundOzand conventionally understood
as the rotation of the greatest energy (it is generally called the
proper rotation). The axis of inertia around which is applied the
proper rotation is called the axis of figure and defines the North
pole of the rotation (Bois 1992). Let us remark that in Fig. 4
(in other figures involvingϕ as well) plotted over 3000 yrs,
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Fig. 4. The rotational motion of Mercury expressed in the ecliptic reference frameOXYZby using the 3-1-3 Eulerian sequence (ψ, θ, ϕ), and
plotted over 3000 yrs. Degrees are on the vertical axis and years on the horizontal axis. The value of 278 898 yrs for the secular part of
theψ angle is related to the planetary interactions. The period of 1066 yrs in the three angles is the libration of the spin-orbit secular variable.
The period of 15.847 yrs in theϕ angle is the proper frequency in longitude of Mercury.

we have removed the mean rotation of 58.646 days in theϕ
angle in order to better distinguish the librations. We may then
clearly identify the first proper frequency of 15.847 yrs (to be
compared to the analytical determination, namely 15.830 yrs
given in Sect. 2).

Theψ angle expresses the nodal precession of the equato-
rial plane of Mercury with respect to the ecliptic plane. It splits
up in a periodic term with a periodΨ = 1066 yrs and a secular
oneΠ = 278 898 yrs.Ψ is the second proper frequency of the
Mercury’s spin-orbit coupling. It can be analytically approxi-
mated by the following formula (used in the Earth’s case by
Goldstein 1981):

2π/

3
2

n2

ωz

C − A
C

cosθ

 . (12)

This analytical expression is suitable for an axis symmet-
ric body. It is not the case of Mercury. However, assuming
Mercury as a symmetric top rotating about its smallest axis of
inertia, with an average equatorial moment of inertiaA = A+B

2 ,
one finds for this period 1300 yrs (by using the values given
in Table 2). The difference between the two values permits to
appreciate the departure of Mercury from a symmetric body.
In the other hand, the dynamical behavior ofψ coming from
SONYR is due to the direct effect of the solar torque by the
way of the true dynamical figure of Mercury. In the 2-body
problem, Sun-Mercury,Ψ = 1066 yrs andΠ = 0 yrs. Related
to the planetary interactions,Π = 278 898 yrs expresses the
departure from the 2-body problem.

The dynamical behaviors ofψ andΩ (the ascending node of
the orbit) are quite superimposed as shown in Fig. 5 (top panel).
As it is mentioned by B´eletski (1986), a second synchronism is
generally involved in a Cassini state. However, in the Mercury’s
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Fig. 5.Mercury’s spin-orbit secular resonance. The top panel presents
the evolution ofψ andΩ both including a secular term. The bottom
panel presents the behavior ofξ = ψ−Ω plotted over 3000 yrs. Let us
underline that thisξ angle does not present any secular term, showing
then a synchronism between both angles,ψ andΩ. On the top pannel,
degrees are on the vertical axis while arcminutes are on the bottom
panel; years are on both horizontal axes.

case, it is not a periodic synchronism as it is the case for the
Moon. Using SONYR, we make easily in evidence the periodic
18.6 yr synchronism in the lunar spin-orbit resonance while
it is about a secular behavior in the Hermean spin-orbit reso-
nance. The 3:2 resonance of Mercury introduces a mechanism
of spin-orbit secular resonancequalitatively analogous to the
orbital secular resonances combined with mean motion reso-
nances (as for instance in the 2:1 case, see Bois et al. 2003). As
it is shown in Fig. 5 (bottom panel), the spin-orbit secular reso-
nance variableξ = ψ−Ω does not present any secular term. As a
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Fig. 6. The rotational motion of Mercury expressed in the ecliptic ref-
erence frameOXYZby using the 3-1-3 Eulerian sequence (ψ, θ, ϕ),
and plotted over 1000 days. Degrees are on the vertical axes and days
on the horizontal axis. The periods of 58.646 and 87.969 days in theψ

andϕ angles respectively, express precisely the 3:2 spin-orbit reso-
nance rate. The period̃P = 175.95 days appears clearly in these plots.

consequence,ψ andΩ on average precess at the same rate equal
toΠ, confirming then the mechanism of spin-orbit secular res-
onance. We find thatξ librates with the particular frequency of
1066 yrs.

In addition, in order to give a detailed inspection of the
short periods involved in the rotational motion of Mercury,
Fig. 6 presents the solution plotted over 1000 days. ThePϕ

rotation period of 58.646 days appears in theψ and θ an-
gles. Whereas the mean rotation of 58.646 days is removed in
theϕ angle (as in Fig. 4), the signature of thePλ orbital period
of 87.969 days is clearly visible (this angle is called libration
in longitude of 88 days in literature). A third period appears in
theψ andθ angles, namely 175.95 days. This one results from
the 3:2 spin-orbit resonance (P̃ = 2Pλ = 3Pϕ).

Figure 7 presents the planetary interactions acting on the
rotational motion of Mercury by the way of its spin-orbit cou-
plings (i.e. indirect effects of the planets on the Mercury’s ro-
tation). In the black line case the problem is reduced to the Sun
and Mercury. In this 2-body problem, the orbital plane does
not precess as it is clear in theψ and θ angles without sec-
ular terms. The secular variations rise up from the departure
of the 2-body problem (as it is visible with the broken, dots,
and cross line cases in Fig. 7). In the broken line case, the in-
teractions between the Sun, Mercury and Venus are taken into
account. With the dots line, the later case includes Jupiter in
addition. The whole planetary interactions are integrated in the

cross line case (except for Pluto). We show that Venus is the
planet which induces the greatest secular term. After Venus,
the role of Jupiter is dominant, and this 4-body problem (Sun,
Mercury, Venus, and Jupiter) defines our “standard” case used
in our Sect. 4.3 for the analysis of the Hermean librations. The
rate of secular variations in the Mercury’s rotation between all
planetary interactions (cross lines) and our standard case (dots
lines) is 11.8 as/cy (as: arcseconds) in theθ nutation angle
and 1.9 amin/cy (amin: arcminutes) in theψ precession angle.
These values should be used as corrective terms in analytical
theories of the rotational motion of Mercury. Let us emphasize
that the spin-orbit motion of Mercury coming from our stan-
dard case is sufficient for preserving the 3:2 resonance ratio
between the two modes of motion.

Starting with the initial conditions defined in Sect. 3.4
(where in particular the initial obliquity of Mercury is equal to
zero), the SONYR model permits obtaining the dynamical be-
havior of the Hermean obliquity by its simultaneous spin-orbit
integration. The variablesi, θ,Ω, ψ from SONYR substituted in
the following relation:

cosη = cosi cosθ + sini sinθ cos(Ω − ψ) (13)

produce the instantaneous obliquityη plotted over 3000 yrs
as presented in Fig. 8. Such a behavior forη gives easily
a mean obliquityη0 = 1.6 amin. We show at present that
this mean value is quite consistent with the Cassini state of
Mercury. Let be the following equation established by Peale
(1988) and reformulated by Wu et al. (1997) and coming from
the Cassini laws:

MR2

C
=
µ

n
sin (i + η0)

sinη0[(1+ cosη0)G201C22 − cosη0G210C20]
(14)

whereµ is the precessional angular velocity of the Hermean
orbit, namely 2π/Π yrs−1, while

G201 =
7
2

e− 123
16

e3 and G210 =
(
1− e2

)− 3
2

are eccentricity functions defined by Kaula (1966).i is the in-
clination of the orbital plane of Mercury relative to a reference
system precessing with the orbit. This inclination varies be-
tween from 5◦ to 10◦ while the eccentricity varies from 0.11
to 0.24, over 106 yrs (Peale 1988). As a consequence,η0 ob-
tained with (14) belongs to [1.33, 2.65] amin. Let us note that a
conventional value of 7 amin is often given in literature. Such a
value, outside the interval of possible values, is very probably
incorrect as already claimed by Wu et al. (1997).

4.2. Principal figure librations

4.2.1. Signature of the C/MR2 coefficient
on the rotational motion of Mercury

Let us consider at present the disturbing torques acting on the
rotational motion of Mercury and as a consequence inducing
direct librations. This section focuses on the librations related
to the dynamical figure of the planet. Such librations are called
principal figure librations(Bois 1995). We assume the Sun re-
duced to a point mass while the gravity field of Mercury is ex-
panded in spherical harmonics up to the degree 2. We express
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Fig. 7. Interactions of the planets on the Hermean rotational motion by the way of the spin-orbit couplings over 3000 yrs. Degrees are on the
vertical axes and years on the horizontal axis for the three panels. In the black line case, the problem is reduced to the Sun and Mercury. In
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Fig. 8. Dynamical behavior of theη instantaneous obliquity of
Mercury plotted over 3000 yrs. Arcminutes are on the vertical axis
and years on the horizontal axis. Over this time of integration, the be-
havior is simply described by a period of 1066 yrs and 3.2 amin of
amplitude. Theη0 mean obliquity is 1.6 amin.

the solar torque acting on the figure of Mercury according to
Eq. (11).

The first coefficients of the Hermean gravity field have
been determined with the Mariner 10 probe (Anderson et al.
1987). We use these values forC20 = −J2 and C22 given
in Table 2. In order to complete the Hermean tensor of iner-
tia (coefficientsA, B,C), the C/MR2 principal moment of in-
ertia is required (see Eq. (11)). Its value is related to the in-
ternal density distribution of the planet according to the polar
axis of Mercury (rotation of greatest energy about the smallest

principal axis of inertia). For an homogeneous planet, such
a normalized value is equal to 0.4. We use a nominal value
of 0.34 (Table 2) used by Milani et al. (2001) and coming from
an internal structure model of Mercury including three layers
(crust, mantle and core).

Figure 9 presents the rotational behavior of Mercury com-
puted over 10 000 yrs in our standard case with two differ-
ent values of its greatest principal moment of inertia: (i) the
computation withC/MR2=0.4 is plotted with the dashed lines
(homogeneous planet); (ii) the broad lines are obtained with
C/MR2= 0.34 (three layer model of Mercury). On the bottom
panel (ϕ angle), the dashed lines are shifted away 1 degree in
order to distinguish them from the broad lines. Figure 9 (espe-
cially theθ angle) shows how theC/MR2 coefficient value and
the constant of precessionΨ (2nd proper frequency) are related.
With C/MR2=0.4,Ψ = 1254.01 yrs while withC/MR2=0.34,
Ψ = 1066 yrs. Besides,C/MR2 andΦ (1st proper frequency)
are also linked and for evaluating this relation, Fig. 10 shows
the variations∆ϕ obtained by differentiation: (i) on the top
panel∆C = 1%, (ii) on the middle panel∆C = 2%, (iii) on
the bottom panel∆C = 15% (0.34+ 15%(0.34) = 0.4). The
beats are signatures related to the variations inΦ.

4.2.2. Signature of the C/MR2 coefficient
on the obliquity and on the libration angle
in longitude

One of the main objectives of the BepiColombo and
MESSENGER missions is to measure the rotation state of
Mercury, up to an accuracy allowing to constrain the size and
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Fig. 9. Rotational behavior of Mercury for two different values of its
greatest principal moment of inertia. Degrees are on the vertical axes
and years on the horizontal axes. The computation withC/MR2= 0.4
is plotted through the dashed lines; this value corresponds to an ho-
mogeneous planet. The broad lines are obtained withC/MR2= 0.34;
this value derives from an internal structure model of Mercury in-
cluding three layers. On the bottom panel (ϕ angle), the dashed lines
are shifted away 1 degree in order to distinguish them from the
broad lines.

physical state of the planet’s core (Milani et al. 2001; Solomon
et al. 2001). Consequently, the two missions have to determine
the four following parameters:C20, C22, η, andϕ that are suf-
ficient to determine the size and state of the Mercury’s core
(see Peale 1988, 1997). CombiningC20, C22, andη, one ob-
tains theC/MR2 coefficient while withC22 andϕ, one obtains
Cm/MR2 (i.e. theC/MR2 coefficient for the mantle). The va-
lidity condition of the first combination is that the dynamical
behavior of the core has to follow the one of the mantle over a
period of time at least the one ofΠ (assertion 1). The validity
condition of the second combination is that the dynamical be-
havior of the core has not to be coupled to the one of the mantle
over a period of 88 days (Pλ) (assertion 2). These two condi-
tions linked together imply some constraints on the nature of
the core-mantle interface (Peale 1997). In order to reach such
an objective, the BepiColombo mission has to obtain a value on
theC/MR2 coefficient with an accuracy of 0.003, i.e. 1% and
therefore foresees measuring the libration angle and the obliq-
uity with an accuracy of 3.2 and 3.7 as respectively (Milani
et al. 2001).

Our SONYR model gives (i) the true relation between the
three parameters (C/MR2, η, ϕ), and (ii) the upper bounds of
the impact ofCm/MR2 on theϕ angle. Figure 11 presents the
impact of theC/MR2 coefficient on the instantaneous obliq-
uity η. In these plots (Figs. 11 and 12), the spin-orbit mo-
tion of Mercury is integrated within the whole solar sys-
tem with an initial obliquity of 1.6 amin, which is the mean
obliquity of Mercury evaluated in Sect. 4.1. The top panel of
Fig. 11 expresses the dynamical evolution ofη computed over
500 days withC/MR2=0.34 (black lines) andC/MR2= 0.3434
(dashed lines). Dashed lines are shifted from 0.001 amin in or-
der to distinguish the two different kinds of lines. Figure 11
shows also how the instantaneous obliquity of Mercury differs
from its 1.6 amin nominal value. The bottom panel shows by
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Fig. 10. The signature of the libration of Mercury when the principal
moment of inertia along the axis of figure varies from 1% in the top
panela), to 2% in the mean panel and 15% in the bottom panelc).
Degrees are on the vertical axes and years on the horizontal axes.

differentiation the signature of the 1% variation ofC/MR2 onη.
The maximal amplitude crest to crest is of the order of 2.3 mas
within the characteristic period of 175.95 days related to the
3:2 ratio of the Mercury’s spin-orbit resonance.

Figure 12 presents the signature of theC/MR2 coefficient
on theϕ libration angle in longitude. The top panel expresses
the behavior ofϕ computed over 500 days withC/MR2=0.34
(black lines) andC/MR2= 0.3434 (dashed lines). One may
compare this Fig. 12 to Fig. 3 resulting from the usual analyt-
ical resolution of the Eulerian Eq. (4) (thanks to G. Giampieri,
private communication). Let us note that the angleγ defined in
Fig. 3 is equal to the angleϕ plotted in Fig. 12. The later only
gives a simple double sine curve with an amplitude of 42 as
while the solution of the SONYR model includes the couplings
between the three rotational variables as well as the indirect
couplings due to planetary interactions (we notice that in the
two Figs. 12 and 3 the amplitude of libration is of the order of
40 as). Let us note that Fig. 12 corresponds to the libration re-
lated to theC/MR2 coefficient of the planet without core-mantle
couplings. Let us add that in Peale (1972), the amplitude ofϕ
is related to theCm coefficient by assuming that the assertion 2
quoted upper is true. On the contrary, our first results on this
topic make in evidence the existence of a faint coupling. This
core-mantle coupling will be presented in a forthcoming pa-
per. The bottom panel of Fig. 12 shows by differentiation the
signature of the 1% variation ofC/MR2 on ϕ. The maximal
amplitude within the period of about 88 days (i.e. the signature
of Pλ) is of the order of 0.45 as.

In conclusion, signatures of the indeterminacy of 1%
in C/MR2 on the obliquity and on the libration in longitude are
2.3 mas and 0.45 as respectively. What is very faint (may be
too much) with respect to the expected accuracy forecasted in
the BepiColombo mission.

4.3. Varying the obliquity

Because the initial obliquity value is unknown, we test in this
last section the impact of the indeterminacy of this value on
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Fig. 13. Impact of the initial obliquity on the nutation angleθ
(top panel), on the orbital inclinationi (middle panel), and on the in-
stantaneous obliquityη (bottom panel). Degrees are on the vertical
axes of the top and middle panels while arcminutes are on the verti-
cal axis of the bottom panel; years are on all horizontal axes. On each
panel, three curves plotted over 3000 yrs correspond to three different
initial values ofη: 0 amin (black lines), 1 amin (dashed lines), and
2 amin (dot lines).

the spin-orbit motion of Mercury. The results are presented in
Fig. 13 plotted over 3000 yrs; top panel: the effect on the nuta-
tion angleθ, middle panel: the effect on the orbital inclinationi,
and bottom panel: the effect on the instantaneous obliquityη.
On each panel, three curves are related to three different initial
values ofη, namely 0 amin (black lines), 1 amin (dashed lines),
and 2 amin (dot lines). In the bottom panel, the amplitudes of
these librations are of the order of 1.4 amin with a period of
1066 yrs. For any initial value ofη ∈ [0, 3.2] amin, the mean
value ofη, let beη0, is equal to 1.6 amin, which is in good
agreement with the determination ofη0 in a previous section.
We may claim thatη0 = 1.6 amin.

For obtaining such a mean obliquity by measurements, let
us underline that the theoretical behavior ofη points out to fit
the observations by a sine function taking into account the long
periodΨ = 1066 yrs with an amplitude of 1.6 amin.

5. conclusion

The 3:2 spin-orbit resonance between the rotational and orbital
motions of Mercury results from a functional dependance of
the tidal friction adding to a non-zero eccentricity and a per-
manent asymmetry in the equatorial plane of the planet. The
upcoming space missions, MESSENGER and BepiColombo
with onboard instrumentation capable of measuring the rota-
tional parameters stimulate the objective to reach an accurate
theory of the rotational motion of Mercury.

Starting from our BJV relativistic model of solar system in-
tegration including the coupled spin-orbit motion of the Moon,
we have obtained a model generalizing the spin-orbit couplings
to the terrestrial planets (Mercury, Venus, Earth, and Mars).
The updated model is called SONYR (acronym of Spin-Orbit
N-BodY Relativistic model). It permits to analyze and iden-
tify the different families of rotational librations. This work has
been carried out for Mercury in the present paper.

The spin-orbit motion of Mercury is characterized by two
proper frequencies (namelyΦ = 15.847 andΨ = 1066 yrs)
and its 3:2 resonance presents a second synchronism which
can be understood as aspin-orbit secular resonance, (Π =
278 898 yrs). A new determination of the mean obliquity has
been proposed in the paper. By using the SONYR model, we
have found a mean obliquity of 1.6 amin. This value is consis-
tent with the Cassini state of Mercury. Besides, we have identi-
fied in the Hermean librations the impact of the uncertainty of
the greatest principal moment of inertia (C/MR2) on the obliq-
uity and on the libration in longitude (2.3 mas and 0.45 as re-
spectively for an increase of 1% on theC/MR2 value). These
determinations prove to be suitable for providing constraints
on the internal structure of Mercury. The direct core-mantle in-
teractions will be presented in a forthcoming paper.
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Appendix A: Free rotation

Let us assumed Mercury isolated in space; in this sense, its
rotation is free and the Euler-Liouville equations for its rota-
tion are written without right hand side, i.e. without any ex-
ternal disturbing torques. If we add the assumption of a rigid
Mercury, we are in the Euler-Poinsot motion case (whose solu-
tions are the well-known Eulerian oscillations). Without explic-
itly integrating such equations, the assurance of integrability in
the Poincar´e sense can be obtained by some theoretical simple
considerations. Indeed, whatever being the triplet of general-
ized coordinates used to describe the spatial attitude of a solid
body in a fixed frame, one knows that there exists four indepen-
dant integrals of motion: the HamiltonianH, and the three com-
ponentsLX, LY, LZ of the angular momentum (inOXYZ). Four
integrals of motion for three degrees of freedom, the problem
is then integrable and even over-integrable. One does not lose
the generality of the problem choosing for instanceA ≤ B ≤ C.
The choiceA ≤ B < C makes possible to write the general so-
lution of the system under a form involving the elliptical func-
tions of Jacobi (Landau & Lifchitz 1969). By convention, let
us adopt that the resulting oscillations in space be called the
Eulerian oscillations, expressing exclusively the oscillations of
the non-perturbed rotation of the rigid body. From this resolu-
tion, we obtain the Eulerian frequencies:

Ω f =

√
L2 − 2AH
C(C − A)

(A.1)

and

σ = Ω f

√
αβ (A.2)

that give for Mercury the two periodsΩ f andσ (whereL is the
angular momentum inOXYZ, H the energy).α andβ are the
dynamical coefficients of the body related toA, B andC by
the following relations:

α =
C − B

A
and β =

C − A
B
· (A.3)
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Fig. A.1. The free rotation of rigid Mercury in the components of its
instantaneous rotation vector expressed in the body-fixed systemOxyz
and plotted over 3000 yrs. Milliarseconds per day are on the vertical
axis forψ andθ angles, degrees per day forϕ, and years on the hori-
zontal axes. The clearly visible period is the Euler period for Mercury:
namely 964.92 yrs. The mean value ofωz is 6.138 deg/day.

With the previous initial conditions given in Table 1 (ψ̇ = θ̇ =
0), the free rotation of Mercury is reduced to an elementary
rotation of theϕ angle only (Ω f = ωz). Starting with the phys-
ical mean values oḟψ, θ̇, andη0 evaluated in the present pa-
per,Ω f = 58.646 days andσ = 964.88 yrs. The period of
58.646 days corresponds to the Hermean polar rotation while
the one of 964.88 yrs means the global period of rotation of
Mercury inR3, which is equivalent to the Earth’s classical Euler
period, namely 305 days (Lambeck 1980). In the case of the
Moon, this period is equal to 148.129 yrs.

Using the SONYR model reduced to the free rotation of
Mercury, we obtain the components of the instantaneous rota-
tion vectorω in the body-fixed systemOxyz, as presented in
Fig. A.1.ωz is well found constant while the Euler period is
equal to 964.92 yrs.
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